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ABSTRACT

Software product lines (SPLs) are known for improving productivity
and reducing time-to-market through the systematic reuse of assets.
SPLs are adopted mainly by re-engineering existing system vari-
ants. Feature location techniques (FLTs) support the re-engineering
process by mapping the variants’ features to their implementation.
However, such FLTs do not perform well when applied to single
systems. In this way, there is a lack of FLTs to aid the re-engineering
process of a single system into an SPL. In this work, we present
a hybrid technique that consists of two complementary types of
analysis: i) a dynamic analysis by runtime monitoring traces of
scenarios in which features of the system are exercised individually,
and ii) a static analysis for refining overlapping traces. We evaluate
our technique on three subject systems by computing the common
metrics used in FL research. We thus computed Precision, Recall,
and F-Score at the line- and method-level of source code. In addition
to that, one of the systems has a ground truth available, which we
also used for comparing results. Results show that our FLT reached
an average of 68-78% precision and 72-81% recall on two systems
at the line-level, and 67-65% precision and 68-48% recall at the
method-level. In these systems, most of the implementation can be
covered by the exercise of the features. For the largest system, our
technique reached a precision of up to 99% at the line-level, 94%
at the method-level, and 44% when comparing to traces. However,
due to its size, it was difficult to reach high code coverage during
execution, and thus the recall obtained was on average of 28% at
the line-level, 25% at the method-level, and 30% when comparing
to traces. The main contribution of this work is a hybrid FLT, its
publicly available implementation, and a replication package for
comparisons and future studies.
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1 INTRODUCTION

Software Product Line (SPL) is an approach to support the sys-
tematic reuse of software assets to create different products. SPLs
improve the productivity of software companies, reduce costs, and
human effort in developing systems. Usually, an SPL is adopted
as an extractive approach, i.e., by the extraction of common as-
sets from existing system products that were created by the op-
portunistic reuse of copy-and-paste [3]. Therefore, approaches for
re-engineering systems into SPLs represent an important research
topic, where the feature location techniques (FLTs) are essential
for supporting the first step for re-engineering process [4]. The
feature location process consists of identifying the implementation
artifacts that belong to a feature, where a feature can be any system
functionality visible to the user [17]. Furthermore, feature location
is one of the most important activities in software maintenance and
evolution tasks, such as documentation, configuration, addition,
removal, or improvement of its functionalities [31]. In addition to
that, it is necessary to perform further studies on how to support
the entire process of automatic re-engineering of existing variants
into an SPL, as most of the existing approaches are semi-automatic
and requires extensive human effort [4].

Existing FLTs to automate the process of finding a feature’s im-
plementation are limited to coarse levels of granularity (generally
the method-level) and/or to not yield good results when applied
to single systems [31]. Usually, FLTs for SPL re-engineering ana-
lyze the commonalities and differences of existing system variants.
However, when there is only one single variant of a system, these
strategies do not provide satisfactory results [1, 9, 27]. An effective
FLT for locating features of a single system can be useful when
aiming to provide a larger product portfolio and serve more cus-
tomers [25]. Thus, an FLT able to locate features at a fine level of
granularity within a single system may facilitate the reuse of source
code, and hence, the creation of new variants of the system.
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From existing FLTs, static, textual, and dynamic analysis are the
most common [4, 11]. The static analysis depends on textual infor-
mation of a set of existing system variants as well as control or data
flow dependencies [1, 27]. However, static analysis often overesti-
mates traces of a feature and retrieve much false positive informa-
tion [20, 22]. Among FLTs based on text analysis [5, 16, 29, 30, 32],
information retrieval (IR) techniques are the most commonly used.
However, the quality of any of the textual analysis depends on the
source code naming conventions and/or the user-issued query [11].
The dynamic feature location consists of executing the system’s
code by exercising the subject feature behaviors and monitoring the
runtime events, such as object creation/deletion, method invocation,
thread creation/termination [12]. Recorded runtime traces can then
be used to find parts of the corresponding feature implementation.
Hence, it does not require a set of system variants to locate features,
and thus, can be used for locating features of a single system [22].
However, the dynamic analysis can have a considerable overhead
on a system’s execution and is unable to distinguish overlapping
source code between features [30]. Dynamic analysis needs appro-
priate test suites or the design of proper scenarios to invoke only
and all traces regarding a specific feature [11, 22]. This may require
prior knowledge of the implementation, and developers usually
have at most a rough understanding of the system, otherwise, the
feature location would not be an issue for re-engineering a system
into an SPL [20]. Thus, effective FLTs for re-engineering single
systems into SPLs are even more challenging [13].

In this work, we present a semi-automated and hybrid FLT, which
combines the results of a dynamic and static analysis. The first
analysis consists of runtime monitoring scenarios in which system
features are exercised. This provides us traces of code executed
while exercising such features of a single system. With the traces,
our technique can simulate variants, i.e., create artificial variants,
to be used as input for the next analysis of our FLT. The second
analysis consists of refining the traces by statically analyzing the
common artifacts and corresponding features. This static analysis
aims to filter out the source code that belongs to multiple features.
We chose a hybrid technique because the dynamic execution data
can contain a lot of noise and we need multiple traces from different
scenarios to have variants exercising different features [2]. Then,
we reduce this noise from the artificial variants by performing static
analysis to filter overlapping traces from different features variants.
This combination leads to promising results for locating features of
single systems. Hence, our technique provides proper support for
re-engineering single systems into SPLs.

For evaluating the efficiency of our technique for locating fea-
tures of a single system, we applied our hybrid FLT to three Java
systems, namely Sudoku, Notepad, and ArgoUML. These systems
have a Graphical User Interface (GUI), which we used to perform
scenarios to exercise their features. We chose those systems, as
they are publicly available SPLs with known sets of features. Also,
ArgoUML is a large and complex system with a ground-truth avail-
able [24]. This makes our results and experiments reproducible and
allows for future comparison. After locating the features, we com-
puted commonly used metrics Precision, Recall, and F-Score [31]
for comparison of traces and source code of the system variants
with the composed ones.
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Our work contributes to the state of the art by improving the
results of locating features of a single system [9]. Related litera-
ture argues that existing FLTs usually perform well when multiple
system variants exist [26, 27]. Thus, it is important to explore how
to improve feature location in single systems, and hence, ease the
re-engineering process of a legacy system into an SPL. In addi-
tion to that, the implementation! and dataset? are available for
reproducibility, evaluation and comparison with other techniques.

2 HYBRID FEATURE LOCATION TECHNIQUE

An overview of our technique is shown in Figure 1, composed of
three steps. Steps 1 (cf. Section 2.1) and 3 (cf. Section 2.3) are desig-
nated to the dynamic and static analyses, respectively. The step in
between (Step 2, cf. Section 2.2) is responsible for preparing the data
obtained from the results of the dynamic analysis to compute the
results of the static analysis. The basic idea of our hybrid technique
is to create multiple artificial system variants from the executions
of a single system. These executions can be performed manually
(i.e., using the GUI) or automatically (e.g., automated tests). Each
execution is intended to exercise one or more features defined in
advance. The information of exercised features is used as input (cf.
Figure 1) to represent the configuration of the dynamic variants. In
this way, FLTs that perform well on larger sets of system variants
can be applied to single systems and reach even better results than
FLTs built for single systems.

Scenarios of Artificial Variants

Features App Source code

Addition,
Base

package ...
import ...
.["|public class ... {

Y
s

ource code

1
Runtime
monitoring

packagename?

it: [package ...
import ...

222

2
223

21

Plpublic class ... {| |

Data
Preparation

Traces
Static
Analysis

Figure 1: Hybrid feature location technique.
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2.1 Runtime Monitoring

The dynamic analysis of our hybrid FLT starts with runtime mon-
itoring when exercising one or more features. This monitoring
allows for obtaining the features’ execution traces (Step 1 in Fig-
ure 1). This step can be performed either by manually executing
designed scenarios using the system GUI or automatically by execut-
ing unit tests to exercise the features. This latter requires automated
unit tests being available. After all scenarios/features were execut-
ed/exercised, the output is a report of execution traces. The output
consists of text files named by the package and class executed. Each
file contains the number of lines executed within the source code
of the respective class. This runtime monitoring can be applied for
any programming language, only requiring to generate the text
files with execution traces, used for the next step of our technique.

To illustrate our hybrid FLT, we use a simple calculator presented
in Listing 1. The calculator system has four operations, which are
the features of the system, namely Addition, Subtraction, Multipli-
cation and Division. In the first step, we monitor the execution of
scenarios that exercise the system features. Let us consider the first
scenario the exercising of the feature Addition. When executing
the calculator, the user will perform only the Addition operation.
The lines of code executed, i.e., traced, will be the Lines 32-42 of
Listing 1. Furthermore, some lines from the core of the project, i.e.,
common code that does not belong to a specific feature, a.k.a Base
feature, will also be executed and traced. In this case, the Lines 1-13
from Listing 1 will be executed too. When executing other scenar-
ios, for example for feature Division, our technique will get traces
with the Lines 44-54 executed besides the Lines 1-10, 14, 18, and
22-25 from Listing 1.

2.2 Data Preparation

The second step (Step 2 in Figure 1) needs as input: (i) traces ex-
ecuted, which are report/text files containing the lines executed
for each class from runtime monitoring scenarios; (ii) the artificial
variants of each monitored scenario, which consists of the name of
the feature(s) that were exercised in a specific scenario, and (iii) the
system application source code files. This step consists of restruc-
turing the source code, at the desired granularity. For our technique,
we consider the granularity of the line-level of source code. The
data preparation in this step consists of parsing the source code
files in tree structures according to the executed lines and the sys-
tem programming language. In the tree structure, presented in our
previous work [27], nodes represent the desired trace granularity,
e.g., lines of code, to be retrieved by the feature location. The output
of this second step is one tree structure for each file that is used as
input data for the third step (cf. bottom part of Figure 1).

For our illustrative example with feature Addition, a tree is
generated in which the root is the class from Listing 1. The chil-
dren of the root are: the required imports, which does not exist
in our example; the method nodes, which are addition() and
main(String[] args); the field nodes, as for example Scanner
scan = new Scanner(System. in); nested enums or classes, which
our example does not have. The two methods’ children are all the
lines executed when we exercised the feature Addition. Thus, the
children of the method addition() are the Lines 33-42 of the List-
ing 1, and the children lines of the method main(String[] args)
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1 public static void main(String[] args) {

2 SimpleCalculator calc = new SimpleCalculator();
3 Scanner scan = new Scanner (System.in);
4 scan.uselLocale(Locale.US);

5 int x;

6 double score;

7 calc.showMenu();

8 X = scan.nextInt();

9 switch (x) {

10 case 1:

11 score = calc.addition();

12 System.out.println(score);

13 break;

14 case 2:

15 score = calc.subtraction();

16 System.out.println(score);

17 break;

18 case 3:

19 score = calc.mutliplication();
20 System.out.println(score);

21 break;

22 case 4:

23 score = calc.division();

24 System.out.println(score);

25 break;

26 default:

27 System.out.println("Wrong choice");
28 break;

29 3}

30 3}

31

32  public double addition() {

33 scan.uselLocale(Locale.US);

34 double a, b;

35 System.out.println("Enter first value");
36 a = scan.nextDouble();

37 System.out.println("Enter second value");
38 b = scan.nextDouble();

39 double val = a + b;

40

41 return val;

42 3

43

44 public double division() {

45 scan.uselLocale(Locale.US);

46 double a, b;

47 System.out.println("Enter first value");
48 a = scan.nextDouble();

49 System.out.println("Enter second value");
50 b = scan.nextDouble();

51 double val = a / b;

52

53 return val;

54 3}

Listing 1: Code snippet from class SimpleCalculator.

are the Lines 2-13 and 29 from Listing 1. Then, after restructuring
the data regarding all the classes executed of a feature, we proceed
with the third step (Step 3 in Figure 1), which we will explain next.

2.3 Static Analysis

In this step (Step 3 in Figure 1), we apply a static feature location
technique. Steps 2 and 3 are incremental. Thus, for every artificial
variant, i.e., the variants created by executing scenarios, we prepare
the data (Step 2 in Figure 1) and compute new or refine existing
traces (static analysis in Step 3 in Figure 1). In this step, traces are
computed or refined in associations, where an association contains
a condition holding positive or negative features and a tree con-
taining the artifacts for the respective condition. The condition
is represented by presence conditions. The presence condition is
computed in the form of a disjunctive normal form formula, where
it is composed of a conjunction of literals, i.e., the features.

As an illustrative example, the first input is related to the feature
Addition. We thus create an association containing one or more tree
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structures with nodes that represent the artifacts and assign them
to a presence condition containing a positive clause, i.e., containing
the features Addition and Base. As our illustrative example contains
only one file, in the second input exercising feature Division, we will
have only one artifact tree corresponding to traces of the Division.
However, as we mentioned before, we also have lines traced for
the feature Base. Then, when comparing the artifact tree of the
existing association with the new input tree, we check for the
shared/common artifacts. This comparison is performed by aligning
the existing tree(s) artifacts with the input tree(s) artifacts by the
Longest Common Subsequence (LCS) algorithm [10].

The traces are updated if common features or artifacts are used
as input more than once. The incremental process to update exist-
ing traces consists of analyzing the commonalities and differences
between the artifacts in existing associations with the new input
artifacts. The analysis of which features belong to the associations
and the features existing in the input is considered to refine the
traces. Thus, when the same artifact is already assigned to a feature,
we just update the presence condition of its association adding
and/or removing positive or negative features. The uncommon arti-
facts between the existing and the new trees that are not assigned
to any existing association will be part of a new association and
the respective feature(s) used as input. In this way, common lines
of source code executed between features may belong to the Base
source code of the system. Thus, those artifacts must be assigned
to a feature used to solely represent the Base of the system. For
creating and updating traces, we use a counter to distinguish how
many times a feature was used as input, in how many inputs an
artifact is contained, and in how many inputs both feature(s) and
artifact(s) were contained together.

For our example, when we compute traces for the second input,
Lines 32-42 from Listing 1 appeared once, and part of the lines of
method main(String[]) appeared once and twice. The feature
Addition appeared once and feature Division once, while feature
Base is part of both inputs. Then, the artifacts with counter one
that appeared only in feature Addition are unshared artifacts with
Division, as they do not appeared in feature Division and are not
part of Base, which counter is two. Besides these artifacts appeared
with the feature Addition and Base, they were not in the input data
used with the feature Division and Base. We thus update the exist-
ing association to hold only the artifacts that appeared once with
the feature Addition. The association will have its presence condi-
tion updated from Addition A Base for Addition A BaseA!Division.
Then, two new associations are created, one containing the artifacts
that appeared once with feature Division and presence condition
Base A DivisionA!Addition. The other new association contains
the remaining artifacts with the presence condition Base because
the remaining artifacts appeared twice in variants containing Base,
which also appeared just twice as input data.

3 EVALUATION

This section first presents the goal and the research question (RQ)
of this study. Then, we describe how we evaluate our technique
by showing the characteristics of the subject systems, the metrics
used, and the methodology we chose for computing the metrics.
Finally, we discuss the implementation aspects of our hybrid FLT.
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Research Goal: Evaluate the efficiency of our hybrid FLT for
aiding the process of re-engineering single systems into SPLs.

ROQ. How effective is our technique for locating features of
a single system? To answer this RQ, we designed a scenario to
perform the detection analysis of the re-engineering process of a
single system into an SPL. The scenario consists of a single system
containing all its existing features. Then, we computed the metrics
Precision, Recall, and F-Score (cf. Section 3.2) to evaluate the effi-
ciency of our technique for locating features in single systems. The
metrics were computed by comparing the traces and/or artifacts
from variants for each feature of the system.

3.1 Subject Systems

We selected three public Java SPLs, widely-used for product-line
analyses: Sudoku, Notepad [18], and ArgoUML [7]. These systems
have often been used to evaluate and compare FLTs [1, 9, 19, 26, 27,
28]. The aforementioned studies that used ArgoUML to evaluate
their FLTs only used this system as a subject. In addition to them,
we use two more subject systems in this work, providing a more
robust evaluation. Table 1 shows the number of lines of source code
(LoC), the number of features, and tests of each subject system.
Regarding the ArgoUML system, it has an established ground
truth available [24], which gives an appropriate evaluation of this
system. Some of its features are diagrams, which we exercised by
invoking each diagram operation manually on the GUIL. However,
we cannot exercise individually features that are not related to
diagrams such as Cognitive and Logging, as they are features that
automatically run in the background. The Cognitive and Logging
features provide information to help designers to detect problems in
their models. For example, they analyze the diagrams and indicate
potential problems warning about parts of the project that have not
been finalized and/or existing syntax errors in models. Therefore,
for ArgoUML, we considered the features Base, Cognitive, and Log-
ging, besides the features specific for each diagram, as input for the
static analysis of each artificial variant. For the Notepad system, to
execute the scenario that exercises the feature Redo, we also need
to previously exercise the feature Undo. Thus, we used as input
for exercising the artificial variant created by the feature Redo, the
features Undo, Redo, and Base. For the Sudoku system, we used as
a set of features for the scenarios executed only a specific feature
exercised and Base. All the artificial variants and configurations
used for the evaluation are provided in our dataset?. The ArgoUML
unit tests were not annotated as the system source code of the SPL,
we thus add annotations with preprocessor directives on tests to
have distinction tests from ArgoUML for each feature, similar to
test case generation for SPLs presented in previous work [15].

Table 1: Subject Systems

System LoC Features Test Cases
Sudoku 2129 5 0
Notepad 2294 20 0
ArgoUML 319896 8 1198

Shttps://doi.org/10.5281/zenodo.4262529
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3.2 Metrics

To evaluate the effectiveness of our FLT, and for allowing compari-
son of our technique to other ones, we used the common metrics
of Precision (P), Recall (R), and F-Score (F) [23], defined as follows:

TP
=T ey
TP + FP
where TP (true positives) are the correctly retrieved traces or lines
of source code or methods and FP (false positives) are the traces or
lines of source code or methods retrieved by our FLT that do not
exist in the ground truth traces or variants.

Precision =

TP
T @
TP+ FN
where FN (false negatives) are traces or lines of source code or meth-
ods that exist in the ground truth or variant but were not retrieved
by our FLT. The F-Score is the weighted average of Precision and
Recall.

Recall =

F-Score = 2 Precision x Recall 5
TCOTe = 5 Precision + Recall ®)

For the subject systems of our study, we compared the correctly
and missed lines of code retrieved by the traces located with our
FLT. Sudoku and Notepad SPLs rely on Java custom annotations
to encode variability [19], which enables us to create ground truth
variants (available in our dataset). We thus computed the metrics
regarding the source code for each feature and the common base
code by using a library for performing the comparison operations
between textual data?. In the case of ArgoUML, we also compared
traces from the benchmark available [24].

The methodology we follow for computing the evaluation met-
rics for every subject system is shown in Figure 2. After having
applied our hybrid FLT to the set of scenarios, the computed traces
are stored in a repository. We then use the computed traces to
compose variants with the same configurations as were used as
input (cf. top part of Figure 2). The implementation artifacts of
each composed variant are then compared to the artifacts of the
respective ground truth variant with the same configuration. This
comparison is performed once on method-level and once on line-
level of granularity to make it easier to compare our results also
to FLTs that only operate on method-level. For ArgoUML not only
ground truth variants but also ground truth traces are available
from the ArgoUML benchmark [24] (cf. bottom part of Figure 2). In
this case, we also computed metrics by comparing the computed
traces with the ground truth traces.

3.3 Implementation Aspects

For monitoring traces of features exercised either manually or by
tests, we used the JaCoCo free code coverage tool®. We chose Ja-
CoCo because it offers support for line-level granularity, different
from existing tools used in previous work [22], which supports
class- and method-level granularity. Furthermore, it also allows
the generation of code coverage reports readable in many formats,
including HTML, CSV, and XML, showing information, such as the
number and percentage of classes, methods, and lines missed.

“4https://github.com/java-diff-utils/java- diff-utils
Shttps://www.eclemma.org/jacoco/
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Figure 2: Methodology for computing metrics.

For runtime monitoring of features exercised on a system GUI,
we used the JaCoCo Java agent. It can be used to dynamically trace
a running Java program. For using the Java agent, we first generate
a Java executable file of the system application and then execute it
with JaCoCo for runtime monitoring. We monitored traces from
the launch of the application GUI until it shuts down. While run-
ning the application, we exercised a feature to trace as much of
its source code as possible, by clicking on its particular available
functionalities. All the executions on the GUI were recorded for
future work comparisons and are available within our dataset. For
monitoring traces of features exercised by the unit tests of a system,
we used the JaCoCo code coverage Maven plugin integrated into
the build process to allow us to record the code coverage during
testing. The feature unit tests were executed on the system variant
containing all features in their source code.

Regarding the static analysis (cf. Section 2), we implemented a
Java adapter for preparing the data for the FLT implemented in
the ECCO tool [14, 21]. We used the FLT implemented in ECCO
because it is independent of the artifacts type and reached higher
precision and recall when applied to a few system variants [27]. It
only requires an adapter for preparing the data in a tree structure
used in the static analysis. Thus, as we only applied for Java source
code artifacts, for now, we used a JavaParser library6 to implement
an adapter. The adapter is needed to parse the Java source code in a
tree structure containing the required granularity. In this case, we
have nodes for each class holding imports, fields, class (including
nested classes), methods, and the method body as lines.

4 RESULTS AND DISCUSSION

In this section, we present and discuss the results of our study in
evaluating our FLT. We present the metrics computed for each of
the subject systems by comparing the lines and methods of retrieved
source code with the actual lines and methods of source code of each
feature variant. In the case of ArgoUML, in addition to the line- and
method-level, we present results by comparing the traces retrieved
with the ground truth traces from the ArgoUML benchmark [24].

®https://javaparser.org/


https://github.com/java-diff-utils/java-diff-utils

VaMoS’21, February 9-11, 2021, Krems, Austria

Table 2: Comparison line by line and method by method per
feature exercised manually on Sudoku GUIL
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Table 4: Comparison line by line, method by method, and
trace by trace per feature on ArgoUML.

Line Method
Feature P R F P R F
States 0.78 0.33 0.46 0.70 0.31 0.43
Solver 081 0.89 084 | 077 082 0.79
Generator 0.67 0.77 0.72 0.66 0.75 0.70
Undo 0.59 0.84 0.70 0.62 0.79 0.70
Extended 058 0.76 0.66 | 0.60 0.74 0.67
Average 0.68 0.72 0.70 0.67 0.68 0.68

P = Precision; R = Recall; F = F-Score.

Table 3: Comparison line by line and method by method per

feature exercised manually on Notepad GUIL

Line Method
Feature P R F P R F
About 0.78 0.77 0.77 0.60 0.36 0.45
AboutMe 078 0.77 077 | 0.60 036 0.45
Copy 0.74 0.79 0.76 0.53 0.42 0.47
Cut 0.76 0.79 0.78 0.59 0.42 0.49
ExitApp 081 0.74 077 | 0.67 042 0.51
Find 0.77 0.79 0.78 0.59 0.42 0.49
FindNext 0.78 0.78 0.78 0.59 0.40 0.48
Fonts 0.88 0.82 0.85 0.84 0.53 0.65
LineNumber 0.78 0.79 0.79 0.59 0.42 0.49
LineWrap 0.76 0.77 0.77 0.61 0.44 0.51
New 0.79 0.93 0.85 0.71 0.71 0.71
Open 0.80 0.90 0.84 0.71 0.68 0.69
Paste 0.76 0.79 0.78 0.59 0.42 0.49
Print 0.79 0.81 0.80 0.73 0.53 0.62
Redo 0.83 0.81 0.82 0.79 0.52 0.63
Save 0.78 0.94 0.86 0.72 0.75 0.73
SelectAll 0.76 0.79 0.78 0.59 0.42 0.49
TimeDate 0.76 0.79 0.78 0.59 0.42 0.49
Toolbar 0.78 0.8 0.79 0.67 0.48 0.56
Undo 0.79 0.8 0.79 0.67 0.46 0.55
Average 0.78 0.81 0.80 0.65 0.48 0.55

P = Precision; R = Recall; F = F-Score.

The results from the computed metrics for each system’s features
obtained by manually exercising features on the GUI are presented
in Tables 2, 3, and 4. In Tables 2 and 3 the metrics computed for
Sudoku and Notepad, respectively, were based on the lines and
methods of source code retrieved from the traces of our hybrid
feature location. For the Sudoku system, our technique reached on
average 68% of precision and 72% of recall at the line-level and 67%
of precision and 68% of recall at the method-level. For the Notepad
system, our technique reached on average precision of 78% and
81% of recall at the line-level and precision of 65% and recall of
48% at the method-level. For ArgoUML, presented in Table 4, our

GUI
Line Method Traces
Feature P R F|P R F|P R F
ActivityDiagram 0.81 0.30 0.44]0.81 0.21 0.34|0.05 0.24 0.08
Cognitive 0.97 0.27 0.42]0.83 0.28 0.42|0.23 0.52 0.32
CollaborationDiagram 0.81 0.29 0.42|0.79 0.23 0.35/0.04 0.19 0.06
DeploymentDiagram 0.82 0.31 0.45/0.78 0.25 0.37[0.04 0.45 0.07
Logging 0.82 0.25 0.38]0.71 0.26 0.37(0.00 0.00 0.00
SequenceDiagram 0.83 0.27 0.41|0.77 0.25 0.38{0.12 0.25 0.16
StateDiagram 0.81 0.28 0.42(0.77 0.26 0.39(0.08 0.31 0.13
UseCaseDiagram 0.82 0.29 0.42]0.73 0.26 0.39/0.08 0.47 0.13
Average 0.84 0.28 0.42(0.77 0.25 0.38/0.08 0.30 0.12
Tests
Line Method Traces
Feature P R F|P R F|P R F
ActivityDiagram 0.99 0.05 0.09{1.00 0.03 0.07(0.24 0.07 0.11
Cognitive 0.98 0.14 0.24]0.94 0.11 0.20(0.26 0.49 0.34
CollaborationDiagram 0.99 0.05 0.09(0.98 0.04 0.08/0.29 0.14 0.19
DeploymentDiagram 0.99 0.04 0.08|0.96 0.04 0.07[0.57 0.10 0.16
Logging 0.99 0.04 0.09/0.85 0.04 0.09(0.95 0.10 0.18
SequenceDiagram 0.99 0.04 0.08(0.96 0.04 0.07(0.33 0.04 0.08
StateDiagram 0.99 0.05 0.10{0.97 0.05 0.09(0.28 0.16 0.21
UseCaseDiagram 0.99 0.05 0.09/0.88 0.05 0.09(0.62 0.20 0.30
Average 0.99 0.06 0.11‘0.94 0.05 0.10‘0.44 0.16 0.24

P = Precision; R = Recall; F = F-Score.

Table 5: Statement coverage in ArgoUML.

GUI ‘ Tests
Feature TS cs % | CS %
ActivityDiagram 47826 11787  24.65 | 3528 7.37
Cognitive 53745 * T 7924 14.74
CollaborationDiagram 46854 11153  23.80 | 3475 7.42
DeploymentDiagram 47005 11807  25.12 | 3373 7.18
Logging 47082 * * | 3395 7.1
SequenceDiagram 48613 11044 22.72 | 3377 6.95
StateDiagram 48327 11304  23.40 | 3440 7.12
UseCaseDiagram 47396 11516  24.30 | 2427 5.12

TS = Total Statements; CS = Covered Statements.

technique reached an average of 84% precision and 28% recall at
the line-level, and 77% precision and 25% recall at the method-level.

Regarding the results from exercising features with ArgoUML
unit tests, our hybrid FLT reached 99% of precision and 6% of recall
on average. The results of features exercised either manually or
with automated unit tests for ArgoUML show lower recall com-
pared to the other two systems, which means the occurrence of
many false negatives, i.e., lines of code missing in relation to the
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total relevant lines of code. Table 5 presents that only ~25% of
the statements of feature variants were covered when exercising
manually and on average ~8% with unit tests. Due to ArgoUML
being the most complex and large subject system of our study [8],
in which more than 80% of the code belongs to the feature Base, it
is very challenging execute all lines of its source code. Thus, when
executing the scenarios for exercising each feature of the system,
we could not reach the coverage of all the lines of the Base code.
In Table 4, we also present the comparison for ArgoUML at the
method-level to be able to compare with Cruz et al. [9] results using
textual IR techniques. Our hybrid technique obtained higher val-
ues of precision and recall on average (77% and 25%, respectively)
compared to their results (16% and 19%, respectively) when exer-
cising manually the features on GUI. Comparing their results (at
the method-level) with our results from exercising features with
unit tests, we reached worse recall but almost optimal precision.
However, they used five system variants to locate features, while
our results used only one system variant.

In addition, using retrieved traces from the ArgoUML bench-
mark [24], we were also able to compare the results of our hybrid
FLT to feature location from previous work [27]. In this previous
work, the average precision and recall were 2% and 41%, respec-
tively. In Table 4, we can see that our FLT reached better results of
precision either exercising features manually or by tests using our
hybrid FLT. Despite the recall reached being worse (30% manually
on GUI, and 16% with unit tests, on average), our technique reached
better precision either exercising features with unit tests and man-
ually on GUI (44% and 8% on average, respectively). Although the
existing unit tests from ArgoUML accordingly exercise the features,
which explain the higher precision (line- and method-level), the
existing tests from ArgoUML are not enough to cover all statements
of the features and the Base code (cf. Table 5). This issue explains
the lower recall. The feature that has higher coverage with test
cases is Cognitive (14% of statements covered), which explains the
higher recall compared to the other features. Analyzing the results
of trace comparisons, for both manually on GUI and with unit tests,
we can see worse results than comparisons at the line- and method-
level. This is due to the code of features being annotated in an
undisciplined way. Such issue requires a very high code coverage to
have precise traces at the refinement level of the ArgoUML bench-
mark. Yet, if the feature was exercised in a way that only some
of a class’s methods were covered, then, the retrieved traces will
contain the refinement of the covered methods. However, in some
cases, an entire class is part of a feature, which leads to traces to
the class without any refinement. This is an example of why some
false-negative and false-positive traces are retrieved.

In summary, the three systems have some false positives in the
results related to imports. Since exercising features do not retrieve
imports, we considered all imports as part of all features. Another
cause of false positives is due to methods that are executed when the
application is initialized, which contains all features of the systems
or are executed automatically when a specific feature is executed.
For instance, the Notepad system has some false positive due to
some lines of feature Undo being automatically executed when
exercising the feature Paste. In the Sudoku system, for instance,
some lines of feature States are executed in the constructor method
of a class implemented for managing the boarder of the game. Thus,
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independent of which feature is executed those lines are always
executed. For instance, with ArgoUML, some false-positive traces
have been retrieved due to the original scenario contains some code
of features UseCaseDiagram and StateDiagram being exercised by
default when the application launches. Also, some traces from the
runtime monitoring are missing lines of methods, even the methods
are completely part of a specific feature. Depending on what is
exercised, just some lines of a method will be executed. We also
have some false negatives and positives in the three systems related
to field declaration inside classes. Therefore, in our evaluation study,
we observed that obtaining high precision and recall is challenging.
Even more in a single, complex, and large system. Because executing
only and all implementation of a specific feature and the Base code
can be infeasible. We thus believe our hybrid FLT can be useful as
a start point to re-engineering a single system into an SPL, as we
were able to locate correctly most of the variable source code of
the target systems.

RQ: How effective is our technique for locating features of
a single system? From the results, we can see that our technique
for locating features might not be effective in large systems as in
small ones, mainly when most of the lines of source code belong to
common implementations, i.e. the feature Base. In our study, this
leads to many false negatives in ArgoUML. However, we could
obtain higher precision for each feature of all the subject systems,
varying from 58% to 81% for Sudoku, 74%-88% for Notepad, and
98%-99% for ArgoUML (at the line-level). Furthermore, in com-
parison with the results of existing techniques, our hybrid FLT
reached better results on average. Hence, we can argue that our
technique performs better for supporting the re-engineering of a
single system into an SPL when compared to previous work [9, 27].

5 THREATS TO VALIDITY

Regarding the systems we chose to evaluate our FLT, they are public
systems and used in previous works. This enables further work
comparisons, which is currently difficult from existing published
works. According to Razzaq et al. [31], only 27% of the existing
FLTs up to 2015 could be reproduced from the published material,
being difficult to make a cross-comparison between FLTs. Further-
more, the three systems have different sizes and particularities that
can show our technique efficiency to locate features in different
systems domain and sizes. Yet, one of the systems we chose is an
open-source and complex system with a benchmark available and
there are not many studies of SPLs proposing benchmarks. Usually,
ground-truths are coarse-grained, i.e., at the level of files, and for
more realistic scenarios, the granularity must be at least at the
method-level [31]. Thus, the ArgoUML benchmark has an appro-
priate granularity, as it is at the level of source code statements
instead of the method-level [24]. Furthermore, previous work al-
ready published used only the ArgoUML benchmark as a subject
system to evaluate their technique [1, 9, 27, 28]. Besides ArgoUML
being one of the most often systems used to evaluate FLTs, it is also
extensively used in the extractive SPL community research [3, 31].
In addition to this, using the ArgoUML system for feature location
is challenging as it has several cross-cutting features, i.e., a set of
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source code elements shared by more than one feature. Thereby,
using the ArgoUML system, makes our work challenging and com-
parable with already existing ones with a very often used system
for evaluation of FLTs, which is very important to take into account.
Because the performance of FLTs depends not only on the FLT itself
but also on the system/benchmark characteristics.

6 RELATED WORK

Feature location has become increasingly popular since the pio-
neered work by Wilde and Scully [34]. Since then, numerous dy-
namic analysis techniques have been proposed in the literature to
aid program comprehension [6]. Wilde and Scully [34] developed
the Software Reconnaissance tool, which works analyzing the exe-
cution traces of test cases by a coverage analyzer. The method can
help to find components to a particular feature, however, it does
not retrieve all the components that belong to a feature.

Static FLTs have proven to be effective and reached higher val-
ues of precision and recall as shown in our previous work [27].
However, worse results were obtained when a few variants exist,
as this static technique is based on the comparison of commonali-
ties and differences of source code of system variants. Hence, this
efficiency is influenced by the number of variants used to locate
features. Another static feature location applied in ArgoUML SPL
is presented by AL-Msie’deen et al [1], which relies on the identi-
fication of the implementation of features among object-oriented
elements of the source code. They applied the technique to a col-
lection of 10 ArgoUML variants. Even, their results show that all of
the features were identified, they did not determine precisely each
feature implementation.

A popular choice for feature location is the dynamic analysis
because it can map the execution of feature code to traces [11].
However, this kind of analysis has also some limitations as the
traces collection may overhead the system’s execution, and some
executions may not invoke all of the code that is relevant to the
feature and/or can invoke code of features running in the back-
ground. Hence, some feature implementation will not be located,
and/or irrelevant traces will be wrongly retrieved. Eisenberg and
Volder [12] used JUnit tests to collect traces. Their tool first collects
the execution trace, generates the calls, and then uses heuristics to
rank methods in relation to what extent a method is relevant to a
feature. Their technique works well when the input quality is high,
which depends on the coverage of the test suite with respect to the
feature under consideration; and on the partitioning of the test suite
that is under the developer’s control. Their branch coverage was
about 86-90% and line coverage ranges from 66-80%. However, their
technique is more coarse-grained than ours, considering up the
method-level. Yet, Eisenberg and Volder’s evaluation is not based
on traditional metrics [31]. Walkinshaw et al. [33] technique is
based on call graphs and showed promising results. However, this
technique requires the identification of methods that have a key
role in the execution of a particular feature code, which requires
the system documentation, or developer knowledge of the system.

Regarding textual techniques, Cruz et al. [9] evaluated three
different strategies based on textual IR also using the ArgoUML
benchmark [24]. Their results show the Latent Semantic Indexing
strategy (reach an average of precision and recall of » 16% and
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~ 19%, respectively) is better than Paragraph Vectors and Latent
Dirichlet Allocation. However, they explicitly show and mention
that the obtained values from the metrics are not high, and they
only consider the method-level of granularity. One of the causes is
because textual IR techniques require a high number of terms re-
lated to the features, which is not always the case as with ArgoUML
scenarios, and are challenging scenarios for this kind of strategy.
They also mention the need of proposing innovative FLTs as ex-
tractive SPL adoption. They suggest the use of hybrid techniques
as a future direction to obtain better results.

7 CONCLUSIONS AND FUTURE WORK

We believe our technique can help developers to save time and
effort when migrating a single system to an SPL, mainly in smaller
systems. For larger systems, even most of the base code may not
be retrieved, we believe it can help to find the variable code, i.e.,
most of the code of the system’s features. In this work, we also
show that existing FLTs are limited to retrieve traces at coarse-
levels of granularity, mainly when just a single system is used
for locating features. With our hybrid technique for dynamically
tracing features and refining them with static analysis, we could
reach higher precision and recall in the smaller systems and higher
precision in the largest system. To get rid of part of the wrong
traces we would need an expert user of the system to execute the
scenarios to obtain the traces more complete and precise as possible.
Our technique depends on the proper monitoring of traces to obtain
higher recall and eliminating traces that belong to the common code
to guarantee higher precision. We thus can infer that the results
can be improved if the exercise of features is optimized.

By this work, we also want to aware the research community of
the need of making available more ground truth with a fine-level
of granularity. Besides it, it is essential that future FLTs provide
evaluation using the common metrics, such as precision and recall
because many FLTs exist, but they use different metrics to evaluate
their technique. This diversity of evaluation limits their comparison,
and then, it becomes a hard task for the developers to choose which
technique is more suitable for applying the software engineering
tasks. We would like to reinforce that future work considers us-
ing systems with ground truth available, common metrics, and a
technique able to locate features at the statement-level and able to
reach higher results with only a single system.

Saving time and effort are the main purpose of using FLTs [4, 26].
Thus, future work can be directed to analyze the effort for executing
scenarios, and evaluate our hybrid FLT of how much time and effort
it would be still required by developers to complete the product
after applying the technique.
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