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Abstract—Preprocessor-based software product lines (SPLs)
are used to deal with evolution in space, in which features
(so-called configuration options)—annotated in source code with
#ifdefs—are included, removed, and systematically reused. Inev-
itably, feature implementations also evolve over time, i.e., when
existing features are revised. Nowadays, Version control systems
(VCSs) are well-integrated into SPL development processes for
versioning support of releases. Changes to existing features in
one version, a.k.a. release of an SPL, usually developed in a
branch, frequently need to be propagated to other active releases.
However, there is no automated support for analyzing and
propagating features in SPL releases. For instance, VCSs can
only propagate changes at the commit level, but miss support
at the feature level, i.e., the building blocks of SPLs. Manually
analyzing and propagating a version of a feature, i.e., a feature
revision, through #ifdefs is risky, time-consuming, and error-
prone because a feature can be interacting with multiple features
and it can be spread in multiple blocks of code across different
files. We thus present a novel and tool-supported approach for
the analysis and propagation of feature revisions. We evaluated
our approach quantitatively by computing its correct behavior
and runtime. Our approach analyzes and propagates a feature
implementation in ≈63 seconds, with, on average, precision
and recall of 99%. In total, we propagated 3,134 features in
space and time between 200 pairs of releases on four real-world
preprocessor-based SPLs. In addition, we qualitatively evaluated
the usefulness of our tool support by conducting interviews with
five experienced core developers of three popular preprocessor-
based SPLs. The qualitative results confirm that our tool support
is useful to speed up the analysis and propagation of feature
revisions.

Index Terms—variability management, feature propagation,
version control system, preprocessor directives, software reuse

I. INTRODUCTION

Preprocessor-based software product lines (SPLs) are im-
plemented with preprocessor directives to provide a reuse-
oriented platform with common and variable code from which
multiple software variants are derived [1], [2], [3]. The pre-
processor directives delineate features with #ifdefs, which can
represent end-user functionality or are used for development
purposes, such as testing, debugging, and deployment [4], [5].
SPLs are widely implemented with preprocessor directives [6],
the most common mechanism used to deal with evolution in
space, i.e., introducing or removing features of a system [7].
Preprocessor-based SPLs commonly evolve over time in addi-

tion to space, i.e., features are revised besides being introduced
and deleted [7]. This evolution in time can result in different
releases of an SPL, where different releases can contain the
same feature but with different implementations [8]. The
different versions of a feature are called feature revisions [9],
[10], [11]. Currently, the most common mechanism to manage
evolution of systems over time are Version Control Systems
(VCSs) [11], e.g., Git. SPLs implemented with preprocessor
directives integrate very well with VCSs, as the preprocessor
directives are basically pieces of code [7]. However, the
evolution over time of preprocessor-based SPLs in VCSs is
tracked for the whole platform at the level of commits [7], [12]
and there are several studies acknowledging the importance of
tracking feature revisions [9], [10], [11], [13], [14], [15], [16].

Due to evolution in space and time developers have to
maintain different releases/branches of an SPL. Thus, over
time, it can be necessary to propagate revisions of a feature
between SPL releases because of bug fixes, refactoring, and
enhancements of features [10]. A recent study confirms that
feature propagation is very challenging and expensive in
preprocessor-based SPLs managed in VCSs, and automated
support is lacking [5]. We further empirically validated with
experienced developers of preprocessor-based SPLs in VCSs
that the analysis and propagation of feature revisions is
currently a hard manual, and time consuming task (details
in Section V). Propagating an entire feature revision im-
plementation between two SPL releases, requires laborious
analyses of which feature interactions, files, and patches of
code, i.e., sequences of lines of the source code belonging
to a feature are differing. However, VCSs do not provide
analysis and visualization of which features are interacting
and affected between different releases of a preprocessor-based
SPL [8]. This is a hard task because preprocessor directives
make source code harder to understand and maintain due
to limited separation of features, and code obfuscation [8],
[17], [18], [19]. Furthermore, while VCSs support propagation
of commit-level changes, they miss support for the feature
level [20]. These limitations and challenges for analysis and
propagation during evolution in space and time confirm the
need for a novel and automated solution [8], [13].

In this work, we define a tool-supported approach for
the analysis and propagation of feature revisions between



releases of preprocessor-based SPLs in VCSs. We evaluated
the correct behavior and runtime performance of our approach
in a large dataset containing 200 target releases of four real-
world preprocessor-based SPLs in VCSs. The results show
that our approach takes ≈63 seconds on average to correctly
analyze the differences of a feature’s source code in multiple
files, patches of code, feature interactions, and to propagate
features in space and time between two SPL releases. In
addition, we qualitatively evaluated the usefulness of our tool
support. For the qualitative analyses, we conducted interviews
with five developers of three preprocessor-based SPLs in
VCSs, and presented concrete evidence of the problem of
analysis and propagation of feature revisions between releases.
Developers considered our tool helpful and confirmed that
such automation would speed up the tasks of analysis and
propagation, indicating the potential of our approach for
practice. Furthermore, the developers gave recommendations
on what can be improved in our tool to better support the
tasks.

In summary, we make the following contributions: (i) an
approach for the analysis and propagation of feature revisions
in preprocessor-based SPLs managed in VCSs; (ii) a non-
intrusive tool [21] that can be integrated into the existing
development of preprocessor-based SPLs in VCSs to support
developers in propagating features in space and time; and (iii) a
dataset [22] containing information of the features propagated
in 200 target releases from four real-world preprocessor-based
SPLs for replication and future work.

II. MOTIVATION

When studying the evolution of features in real-world
preprocessor-based SPLs in VCSs, we found that feature
revisions existing in a specific release are propagated to
other releases where they do not exist or have a different
implementation. Initially, it was a shred of evidence we found
out by exploring the history of changes in the repositories of
preprocessor-based SPLs in VCSs. Afterward, we interviewed
developers of the systems analyzed (Section IV) to empirically
confirm that our assumption is a real problem for developers.
We now discuss in this section some challenges confirmed by
developers of the systems of our two motivational examples.

The first motivational example is from the SPL Marlin, an
open-source firmware for 3D printers. In a pull request from
Marlin1 users were complaining that the feature BLTouch
V3.0 in release 2.0.x does not exist in 1.1.x, and thus nobody
buying a new BL-Touch V3.0 would be able to use the release
v1.1.9. The pull request propagated changes involving 114
files, 3,208 lines added and 911 deleted, and around 1,100 pre-
processor directives. The second motivational example comes
from the SPL SQLite, an SQL database engine, where a feature
for testing purposes was propagated over four releases2. From
these examples of real scenarios and developers’ experiences,
we observed two main challenges:

1https://github.com/MarlinFirmware/Marlin/pull/14839
2https://www.sqlite.org/src/info/7b4583f932ff0933

Challenge 1: Analysis of the feature interactions and
differences of a feature’s source code between releases.
In the interviews, developers revealed that they first need to
understand the nature of the feature, for example, if it is a new
API function or adding a new module. It is then necessary to
analyze all the source code required by a particular feature and
the different lines of code respective to the feature between two
releases. The analysis of the deltas, i.e., lines of code differing,
can be done by the diff command of a VCS. However,
developers reported that a diff between two releases might
involve thousands of lines, and, for example, VCSs only show
a diff within a file that changed with no support for keeping
track of all the #ifdefs. One of the developers of SQLite,
highly experienced with propagation of features, explicitly
said that he had to propagate features multiple times over
multiple releases and that he spends hours with the analyses
of features through #ifdefs. Further, he mentioned that it is
hard to understand feature interactions and it can become
particularly complicated when combining negative features,
i.e., #nifdefs. One of the Marlin developers mentioned that
using Git and the integrated development environment (IDE)
does not allow to see the big picture of changes related to a
feature implemented in several #ifdefs and files.
Challenge 2: Propagation of a feature’s source code
between releases. All developers stated that there is no tool for
the propagation of features, which is a manual process of copy-
and-paste. Developers mentioned that although a disciplined
project with one isolated change at a time allows easier
propagation with the cherry-picking command from VCSs,
this is still an imperfect strategy. For example, cherry-picking
does not substitute the propagation of source code related to
many files and related to many commits that you cannot reuse
all the changes. Therefore, developers report that currently,
the propagation of features is a manual, laborious, and time-
consuming task.

III. APPROACH

Our approach comprises the analysis and propagation of
feature revisions, as illustrated in Figure 1. It enables the
propagation of the source code of a specific feature revision
between different SPL releases. Before performing the analysis
and propagation of feature revision(s), our approach needs as
input the set of features existing in each release, the feature(s)
to be propagated from one release to another, and the snapshot
of each release, i.e., the files of their current state. In case
the developer does not know the current features of each
release, our approach has an optional step (Step 1 , mining
releases’ features in Figure 1), for mining the set of feature
revisions existing in a release. The result of Step 1 is a
feature-to-release mapping. To retrieve the features existing
at a specific point in time, our approach retrieves for each
conditional block of code wrapped by preprocessor directives,
i.e., #ifdefs, which feature(s) belong to it. Step 2 (feature
revision analysis in Figure 1) is necessary to know for each
delta, i.e., differences in the source code between one release
to another, which change belongs to which feature revision(s)

https://github.com/MarlinFirmware/Marlin/pull/14839
https://www.sqlite.org/src/info/7b4583f932ff0933
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Figure 1: Approach overview for analysis and propagation of
feature revisions.

to be propagated. Then, Step 3 (feature revision propagation
in Figure 1) is performed after knowing which files and
patches of code and feature interactions will be affected by
propagating a feature revision. The result of this step are
then the files of a destination release containing the feature
revision(s) propagated.

1 Mining Releases’ Features (Optional Step)
The mining step retrieves which features were revised in

which commits of a release. For every patch of code that
differs between different releases, called here as “changed
block”, the approach builds constraints including the #ifdef
and #define preprocessor directives responsible for activ-
ating the changed block. A macro defined via a #define
preprocessor directive that is wrapping a patch of code via
#ifdef, for example, cannot be considered a feature revision
as it cannot be selected directly by users. However, macros
defined within the source code may influence activating a
changed block. Thus, all macros (feature revisions or not) are
taken into account to build constraints influencing activating
a changed block. These constraints are then handed over to
a constraint satisfaction problem (CSP) solver [23], which
finds a solution defining which features must be selected in
the corresponding SPL to activate a particular changed block,
including all features and their interactions. The solver is
necessary to automatically and reliably identify interactions
and dependencies between features [24].

To better illustrate the need for a CSP solver, let us
use a code snippet adapted from LibSSH, as shown in
Figure 2. There are four different macros WITH_SERVER,
MD5_DIGEST_LEN, __cplusplus, and _LIBSSH_H.
In this example, the macro MD5_DIGEST_LEN cannot
be selected by the user and is not a feature revision.
MD5_DIGEST_LEN is defined in a block of code
corresponding to a conditional expression of feature

1 # i f WITH SERVER
2 <code>
3 # d e f i n e MD5 DIGEST LEN 16
4 # e n d i f
5
6 # i f c p l u s p l u s
7 # i f LIBSSH H && MD5 DIGEST LEN > 5
8 <code>
9 # e n d i f

10 # e n d i f

Figure 2: Code snippet adapted from LibSSH.

1|1 # i f WITH SERVER
2 + <new code>

2|3 <code>
3|4 # d e f i n e MD5 DIGEST LEN 16
4|5 # e n d i f

(a) ADD delta.

1|1 # i f WITH SERVER
2| − <code>
3|2 # d e f i n e MD5 DIGEST LEN 16
4|3 # e n d i f

(b) REMOVE delta.

1|1 # i f WITH SERVER
2| − <code>
|2 + <new code>

3|3 # d e f i n e MD5 DIGEST LEN 16
4|4 # e n d i f

(c) CHANGE delta.

1|1 # i f WITH SERVER
|2 + <new code>
|3 + <new code>

2| − <code>
3|4 # d e f i n e MD5 DIGEST LEN 16
4|5 # e n d i f

(d) CHANGE delta.

Figure 3: Examples of delta types of a modified file
(FC MODIFY) resulting in new revisions of the feature
WITH_SERVER.

WITH_SERVER (Lines 1-4). This means that the
macro MD5_DIGEST_LEN is defined when the feature
WITH_SERVER is selected by the user. To mine the feature
revision(s) of the patch of code in Line 8 of Figure 2, the
following constraint is built and enables us to know the feature
interactions: (WITH_SERVER =⇒ MD5_DIGEST_LEN
= 16) ∧ __cplusplus ∧ _LIBSSH_H ∧
(MD5_DIGEST_LEN > 5) ∧ BASE. The solution retrieved
is then a configuration that is able to execute the patch of
code in line 8: WITH_SERVER = TRUE ∧ __cplusplus
= TRUE ∧ _LIBSSH_H = TRUE. The set of features
responsible for activating the patch of code in Line 8 is
WITH_SERVER, __cplusplus, and _LIBSSH_H. After
the features and interactions are obtained, the revised feature
is computed according to the heuristic from Michelon et
al. [10]. A feature is revised when it has blocks of code before
the commit changes where its blocks of source code have
been changed. The feature is deleted when no conditional
blocks, i.e., #ifdefs involving the feature, exist anymore after
a commit. A feature is introduced when a commit contains at
least one conditional block involving the feature in #ifdefs.
The heuristic takes all the features retrieved in a configuration
and assigns as the revised features the closest features to
the changed block, which are the ones directly impacted.
In our illustrative example, the feature that is revised is the
feature _LIBSSH_H, which interacts with WITH_SERVER
and __cplusplus.

2 Feature Revision Analysis
This step starts with the computation of the differences



1| − # i f WITH SERVER
|1 + # i f WITH SERVER && WITH SSH1

2 <code>
3 # d e f i n e MD5 DIGEST LEN 16
4 # e n d i f
5
6| − # i f c p l u s p l u s
7|6 # i f LIBSSH H && MD5 DIGEST LEN > 5
8|7 <code>
|8 + <new code>

9|9 # e n d i f
10| − # e n d i f

Figure 4: Examples of deltas resulting in one feature intro-
duced (WITH_SSH1), one feature revised ( LIBSSH H) and
one feature deleted (__cplusplus).

between two arbitrary releases, i.e., between the last commit
of each arbitrary release, referred to as origin O and destin-
ation D. The commit O is related to the snapshot of a point
in time of the source code containing the feature revision to
be propagated and D is related to the snapshot of a point in
time where the feature revision with the implementation of the
commit O should be propagated. To compute the differences,
firstly, the files of the two commits O and D are obtained.
Secondly, the approach identifies the changes between the
commits, which are the differences to be possibly propagated
from O to D. A file change (FC) corresponds to a file that can
be either deleted, inserted, or modified. Thirdly, the approach
maps to a FC the numbers of the first and last lines removed
or added for each of the patches of code that differs between
the commits O and D. Each FC is described next:

DELETE. In this file change, a file existing in commit D
does not exist in O. The reference of this change type in FC
contains the number 1 to represent the first line, and the total
number of lines of the deleted file (n) to represent the last line
of the deleted file. Then, FC receives the flag “DELETE”.

INSERT. In this file change, there is a file in commit O that
does not exist in D. The reference of this file change in FC
contains the number 1 to represent the first line, and the total
number of lines of the inserted file (n) to represent the last line
of the inserted file. Then, FC receives the flag “INSERT”.

MODIFY. In this file change, a file existing in commit O also
exists in D, but in a different state. A modified file may be
affected by many deltas. Thus, to assign the reference to each
of the deltas in FC, our approach uses the patches of code
contained in the file’s deltas. A delta is a way of storing or
transmitting data in the form of differences between sequential
lines rather than complete files. For each delta, our approach
obtains its type (REMOVE, ADD, or CHANGE). Examples are
presented in Figure 3. An ADD delta (Line 2-2 in O, Figure 3a)
contains lines added in O in comparison to D, referencing the
line number of the beginning and end of the lines added in
the ADD delta. A REMOVE delta contains lines removed from
O to D, referencing the line number of the beginning and
end of the removal (Line 2-2 in D, Figure 3b). Finally, a
CHANGE delta (Figure 3c, Line 2-3 and Figure 3d, Line 2-4)
contains lines changed, consecutive removals and additions,

from O to D. The file change thus contains not only one, but
two references. The first reference contains the beginning and
end of the addition delta lines (Line 2-2 in O, Figure 3c, and
Lines 2-3 in O, Figure 3d), while the second reference contains
the beginning and end of the removal delta lines (Line 2-2 in
D, Figure 3c, and Line 2-2 in D, Figure 3d).

Next, our approach gets the conditional blocks of code
corresponding to added, removed, and changed deltas respect-
ive to the feature(s) to be propagated. Thus, the output of
the feature revision analysis contains the conditional blocks
of code with deltas respective to the feature(s) that can be
propagated. For each delta, the feature revision analysis also
describes the feature interactions and the features that might
be affected, i.e., nested features in conditional blocks of code,
which is essential for preprocessing the source code [1], [6],
[25]. For instance, using our running example (Figure 2), in
Figure 4, we present three deltas modifying the code snippet
adapted from LibSSH: The first delta (Line 1, Figure 4) is
a CHANGE delta, where Line 1 in D is removed, which
contains #if WITH_SERVER conditional expression and a
new line added (Line 1 in O, Figure 4) to substitute this
conditional expression by another conditional expression #if
WITH_SERVER && WITH_SSH1. The feature revision ana-
lysis finds which features were introduced, revised, and de-
leted. For this delta (Line 1 removed in D and Line 1 added in
O, Figure 4), WITH_SSH1 feature was introduced. The feature
WITH_SERVER interacts with the feature WITH_SSH1 for the
changes regarding the conditional block of code in Lines 1-4,
Figure 2. Thus, before propagating the implementation of the
feature WITH_SSH1, the feature revision analysis provides
delta(s) of inserted, deleted, or modified files, lines added
and/or removed, the features that were revised, introduced,
and deleted, as well as feature interactions.

The REMOVE deltas in Lines 6 and 10 in D (Figure 4)
are deltas resulting in deleting the feature __cplusplus.
In this example, propagating the deletion of the feature
__cplusplus from the system has an interaction with
the code of the core of the system (BASE). The feature
_LIBSSH_H might also be impacted, as it is nested with the
conditional block of code respective to the REMOVE deltas in
Line 6 and 10 in D. The ADD delta in Line 8 in O resulted in
a revision of the feature _LIBSSH_H. If the feature deletion
is propagated, this also means that the feature _LIBSSH_H
does not depend anymore on the feature __cplusplus, but
still interacts with WITH_SERVER because WITH_SERVER
defines MD5_DIGEST_LEN.

3 Feature Revision Propagation
The feature revision propagation is based on the selection of

deltas obtained by the Feature Revision Analysis. Our approach
analyzes if the selected deltas are related to inserted, deleted,
and modified files. Then, it uses the files from the respective
snapshots of two releases (O and D), and a directory path to
check out the files of D containing the implementation updated
with feature revision(s) propagated.

To propagate a feature revision considering differences



between O and D, our approach gets the files from the
Git repository of O and D releases’ snapshot. Propagating
a feature revision implementation for an inserted file means
copying the file from commit O to the resulting directory,
as the file does not yet exist in commit D. Then, all files are
copied from D to the resulting directory excluding the deleted
and modified files of D. For modified files, the approach
obtains the file from O as well as from D. Then, it creates a
modified file line by line, using a counter starting from zero
and ending with the same number of lines of the file of D.
Before writing a line, our approach checks whether the line
is in a position of a delta, where the line must be removed
or a new line must be added. In case of a removed line, the
approach does not add the respective line. In case of an added
line, the approach adds the respective line from O to D before
continuing with the next lines of the file of D. When more
lines are added in sequence, then all lines are added before
continuing with the next lines of the file of D.

To illustrate the feature revision propagation of a modified
file, we continue with our running example presented in Fig-
ure 2. To make it easier to understand we use the conditional
block of code of feature revision WITH_SERVER (Lines 1-4,
Figure 2). Figure 3 shows possible delta types in FC MODIFY:
Figure 3a contains an ADD delta; Figure 3b contains a REMOVE
delta; and Figures 3c and 3d contain a CHANGE delta, where
a CHANGE delta can be one line/a sequence of lines removed
followed by one line/a sequence of lines added (Figure 3c).
A CHANGE delta can be either one line or a sequence of
lines added followed by one or a sequence of lines removed
(Figure 3d).

The ADD delta contains one reference with one line added
(Line 2 in O, Figure 3a) before Line 2 in D, i.e., from the
previous revision of the feature WITH_SERVER (Figure 2).
To propagate a feature revision from the O snapshot to the
D snapshot, our approach retrieves each delta for each file
containing a feature revision. For the example of an ADD delta,
the approach adds the lines of the added lines reference in O,
beginning in the line number of the corresponding file in D
where the delta begins. For example, the lines in Figure 2
are copied to the new version of the D file until there is a
line number corresponding to the ADD delta in Figure 3a. As
there is no line removed, the next lines existing in D are
copied right after the line added. As shown in Figure 2, in
D line number 2 was “<code>” and now it is in the third
line of the file in D because a new line content has been
added to the second line of the D file. The REMOVE delta
contains one reference with one line removed (Line 2 in D,
Figure 3b), which was Line 2 of the previous revision of the
feature WITH_SERVER (Figure 2). For the REMOVE delta, the
same procedure happens as for the ADD delta. However, the
REMOVE delta has a reference for removing the content of line
number 2 existing in D, and thus line number 2 will have the
content of line number 3 in Figure 2.

The CHANGE delta contains two references: in the CHANGE
delta of Figure 3c, the first reference contains the line number
where addition begins and where it ends (Line 2-2 added in

O), and the second reference contains line numbers where
removal begins and where it ends (Line 2-2 removed in D).
In the example in Figure 3c, line number 1 does not change
in D, and the second line is removed. Then line number 2
in O is copied to line number 2 in D. The second CHANGE
delta presented in Figure 3d differs from the former CHANGE
delta because it starts with a sequence of lines added and then
a line is removed between O and D. The second CHANGE
delta contains in its first reference Lines 2-3 (added in O).
Its second reference contains the beginning and end of the
line(s) removed (Line 2-2 in O). Therefore, line number 1
does not change in D, and the second line in D is substituted
by the second line in O. Lastly, instead of copying the next
line existing in D (Line 3 in Figure 2), it is necessary to first
add all the lines existing in the sequence of lines added before
continuing writing the next lines of the file in D. Note that
file D will now have the content of Lines 3 and 4 in Lines 4
and 5 after the propagation of the CHANGE delta in Figure 3d.

IV. EVALUATION

We performed a quantitative evaluation of the correctness
and runtime performance of our approach and a qualitative
evaluation of the usefulness of our tool. Specifically, our study
was guided by the following research questions (RQs):

RQ1. How effective is the proposed approach for analysis
and propagation of feature revisions in preprocessor-based
SPLs in VCSs? Our goal was to check the correct behaviour
and runtime performance of our approach for analysis and
propagation of feature revisions. We checked whether our
approach correctly propagates the implementation of feature
revisions between two releases. We also checked whether our
approach introduces new features and removes features, not in
common between two SPL releases.

RQ2. What is the perception of developers regarding the
usefulness of our tool for the analysis and propagation
of feature revisions? Our approach and tool support was
defined based on existing practical problems. However, to
better understand the impact of our tool support, we wanted to
understand how developers perceive the usefulness of our tool
for the analysis and propagation of feature revisions annotated
in preprocessor-based SPLs.

A. Quantitative Analyses (RQ1)

Establishing the ground truth. Figure 5 illustrates how
we evaluated our approach for analysis and propagation of
feature revisions. For each subject system, we cloned their
Git repository. After, to avoid bias, we randomly chose 200
different pairs of releases to be destination and origin targets.
We also carefully analyzed the possible random combination
of releases to obtain a significant number of commits between
the releases, which should have considerable changes and thus
different feature revisions. As the total number of possible
pair combinations is huge and infeasible to compute, we
determined the same number of combinations for all systems
and limited the total runtime to no longer than 48 hours for
computing all the propagations.
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Figure 5: Evaluation methodology of the quantitative analyses
of our approach.

For each destination and origin, our approach copies their
snapshot files (Step 1). As input for Step 2, the set of features
of each release (mined by our approach in advance) and the
feature revision(s) to be propagated are also required. The fea-
ture(s) revision(s) to be propagated are features with different
implementations in the origin and destination releases. Some
feature revisions can either exist in both releases or not. For
example, a feature revision existing in the origin release but not
in the destination release is a feature revision to be introduced
in the destination release. Lastly, a feature revision existing in
the destination release that does not exist in the origin release
is a feature revision to be removed in the destination release.
We performed propagations of only a single feature revision
at a time, as well as multiple feature revisions.

For each feature revision to be propagated, there is an output
from Step 2, which contains propagation characteristics, i.e.,
files and patches of code, and feature interactions regarding the
differences of a feature revision between two releases (detail
and results are available in our online appendix [26]). The files
and lines of code affected per feature revision to be propagated
are now used as input for Step 3. In this step, each feature
revision is incrementally propagated, and the output is the
destination files of code updated with the feature revisions
propagated. Therefore, after propagating feature revisions from
origin to destination, we get updated files of code of the
destination release. If our approach performed the analysis and
propagation of feature revisions correctly, the updated files
of code in the destination release must be equal to or very
similar to the content of files of code of the origin release. We
also get the runtime computation of Step 3 as well as further
propagation characteristics for each pair of releases.

Following, Step 4 consists of a line-wise comparison of
files affected between the origin and destination releases with
the feature revisions propagated. When there is a line or a
sequence of lines that are not supposed to be in the destination
file using the corresponding origin file as a baseline, this will
result in false positive(s). False negative(s) occurs when a line
or a sequence of lines is missing in the destination file using

Table I: Subject systems and their characteristics.

System Domain Releases Since Commits LOC Features
LibSSH Network library 48 2005 5,022 110,590 121
SQLite Database system 113 2000 20,090 173,714 384
Irssi Chat client 69 2007 5,331 85,325 57
Bison Parser 105 2002 6,991 39,904 83

the corresponding origin file as a baseline. Then, the false
negatives (lines missing) and the false positives (surplus lines)
are used as input for the last step (Step 5), which computes
the precision and recall used to answer RQ1.
Subject Systems. The quantitative analyses rely on four open-
source preprocessor-based SPLs managed in the Git VCS
(Table I). We reduced bias by choosing different application
domains. Furthermore, each system has a considerable history
of development and use in research [1], [8], [19], [27],
[28], [29]. The systems comprise ≈40,000-174,000 lines of
source code, ≈5,000-20,000 Git commits, and ≈15-22 years
of development. A criterion for including these subject systems
is that they were subjects in related work of feature evolution
in space and time with a dataset of their evolution available [8].
Based on the dataset available, we thus know which features
exist in one release that does not exist in any other arbitrary
release. Therefore, this information helped us to check our
approach’s correct behaviour for analysis and propagation of
the implementation of feature revisions.
Correct behaviour. For checking the correct behaviour of our
approach we computed precision, recall, and F1-score [30].
Runtime. We measured the runtime performance (seconds) for
completing the analysis and propagation of a feature revision
using a laptop with an Intel® Core™ i7-8650U processor
(1.9GHz, 4 cores), 16GB of RAM, and Windows 10.

B. Qualitative Analyses (RQ2)

To evaluate the usefulness of our tool support for analysis
and propagation of feature revisions in preprocessor-based
SPLs, we first contacted open-source developers who contrib-
uted to or maintained source code of the preprocessor-based
SPLs used in our study. The goal of this first contact by email
was to get in touch with them and to learn more about their
experience. Developers with industry experience were then
invited for follow-up interviews of 30 minutes. Interviews were
conducted to find out whether our tool support would help
with the analysis and propagation of feature revisions. We
also wanted to obtain insights on their current development
challenges and promising areas for future investigation.
Participant selection. We emailed developers if they per-
formed at least 10 commits to one of the investigated
preprocessor-based SPLs (Marlin, SQLite, Bison, Irssi, and
LibSSH), and we could find a public email address or website
for contacting them. In the end, we sent emails to 103
developers of these systems. 13 developers replied to us out
of which 8 had sufficient experience to be invited to the
interviews. Five developers from Marlin, SQLite, and Bison
were available and accepted our invitation. During the fifth
interview, we already had reached saturation [31], [32] in



the sense that we only got marginal additional insights. The
developers’ profile and experience is available in our online
appendix [26].
Interview. We conducted each interview in the same way,
following a semi-structured fashion divided into four phases,
inspired by Zhou et al. [33]. The interviews with developers
were conducted after we executed a pilot interview to detect
and resolve misunderstandings and structuring problems.

• Opening and introduction: We started each interview by
asking the participants whether they consent to video/au-
dio recording based on a consent form sent in advance
to them. Right after we started recording and asked
the interviewees to watch an introductory video3 briefly
explaining our research topic and the general purpose of
the interview.

• Understanding how features are propagated between re-
leases by developers: We first asked participants to de-
scribe how they would perform analysis and propagation
of a feature between two releases of preprocessor-based
SPLs. Subsequently, we pursued two questions: Q1. What
is your step-by-step process to analyze and propagate a
feature between two releases (do you use any tool, or is
it a fully manual process)? Q2. How do you ensure that
the propagation is correct?

• Understanding how helpful is our tool support and what
can be improved: Before asking the developers about
the usefulness of our tool, they watched a video4 with
a demo of our tool, showing an example illustrating
its capabilities and demonstrating what developers can
automate. Afterwards, we asked them four questions:
Q1. Would the tool help in maintenance and reuse tasks
relying on the analysis and propagation of features?
Q2. Would the tool help even if you would have to
compile and run tests to ensure that the propagation is
correct? Q3. Can you remember a development situation
in which the tool could have helped? Q4. Would you use
the tool when propagation is needed?

• Closing: We concluded the interview by asking two last
questions: Q1. What do you suggest for improving the
tool? Q2. Are there other problems you regard as more
relevant?

Analysis. After the interview, we transcribed all the video
and audio recordings. We employed Grounded Theory (GT)
procedures [32] to conduct an in-depth qualitative analysis of
the data. Thus, first, we performed open coding to associate
codes of developers’ utterances with categories. Afterward, we
related the codes through axial coding, i.e., the codes were
merged and grouped into more abstract categories. Then, we
proceed with selective coding where we select one central
aspect of data as a core category or final category, which is
the GT analysis to answer RQ2.

3https://youtu.be/TX9HOtir4Ws
4https://youtu.be/KmMzRM8Ft3g

V. RESULTS AND DISCUSSION

This section presents the results for our RQs. At the end of
each subsection, we present the answer for each RQ.

A. Approach Efficiency (RQ1)

This section presents the quantitative results, i.e., the ap-
proach performance in terms of correct behavior and runtime.
Our dataset [22] contains propagations of 3,134 features and
from the total number of features propagated, 87.7% were
revised features, 11.3% were introduced features, and 1.0%
were removed features. Therefore, 12.3% of the feature revi-
sions propagated represented evolution in space, and 87.7%
represented evolution over time affecting a total of 237,854
patches of code and 14,244 files. Our online appendix [26]
presents more detail and the Propagation Characteristics, as
well as an analysis of the complexity of the propagations
performed.
Correct behaviour. Regarding the correct behaviour, our
approach could propagate feature revisions for each target
system with 99% precision, recall, and F1-score, on average,
considering 200 random pairs of releases. Table II shows
the total number of lines of surplus code and missing code
concerning the total propagated, i.e., not considering the files
of source code where no patches were propagated. We invest-
igated why our approach did not reach 100% of precision,
recall, and F1-score for the feature revision propagation. The
reason is that multiple cases of “dead code” were encountered
in the source code files. A dead code is a conditional block
of code (#ifdefs) that is never included under the precondition
enclosing it, which means the block is unselectable and cannot
be activated under any configuration option [34]. Thus, if a
presence condition of a conditional block is unsatisfiable and
no solution is found by the CSP solver, it is dead code and
cannot be linked to any feature revision.

Finding dead code is an important issue because it allows
the detection of defects and bugs in some parts of a sys-
tem implementation without considering the implementation
at large [35]. Dead codes are commonly encountered in
preprocessor-based SPLs, for example, the Linux kernel [36].
There exist many dead variable analyses for identifying dead
conditional blocks of code [35], [36], [37], [38]. However,
although this is not the focus of this work we present some
examples of dead codes to explain why our approach could
not reach 100% precision and recall. For instance, in the
release GNU_1_27, commit hash e7ae9cf5 of Bison system,

Table II: Total number of lines of surplus code and missing
code in relation to the total propagated for all random pairs
of release.

System Total Surplus Missing
LibSSH 1,640,846 62 1,128
SQLite 7,037,363 1,270 11,488
Irssi 2,446,339 231 2,118
Bison 1,340,663 3,824 11,017

5https://github.com/bison/e7ae9cf

https://github.com/akimd/bison/tree/e7ae9cfb4736c9f147aed97a6b195785f5a81a2e
https://github.com/akimd/bison/tree/e7ae9cfb4736c9f147aed97a6b195785f5a81a2e
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Figure 6: Average Runtime performance in seconds for ana-
lysis and propagation of a feature revision for each random
pair of releases.

the file reader.c contains a conditional block of code with
conditional expression #if 0. This is often used for com-
menting out/removing temporarily part of the source code
that should not be compiled and potentially will be turned
back on later. Another dead code in release GNU_1_27
was found in file getopt1.c, in a conditional block with
#if !defined _LIBC && defined __GLIBC__ &&
__GLIBC__ >= 2 as conditional expression that is never
satisfied.
Runtime. The runtime performance for each feature revision
analysis and propagation per system is presented in Figure 6.
The system that took the most time on average for analysis
and propagation per feature revision was Irssi with 850.5
seconds in total, with 848.75 seconds for the analysis and
1.75 seconds for propagation. The runtime of analysis and
propagation of a feature revision varies with the number of
feature interactions, patches, files, and lines of code that differ
between two releases, which explains the outliers we observed
in all systems. All these metrics are available [26].

Answering RQ1. How effective is the proposed approach for
analysis and propagation of feature revisions in preprocessor-
based SPLs in VCSs? Our approach was able to propagate
3,134 feature revisions with 99% of precision, recall, and
F1-score on 200 random pairs of releases of four real-world
preprocessor-based SPLs involving evolution in space and
time. Although our approach did not reach 100% precision
and recall, the propagation behaved as intended if excluding
dead codes, which is a problem in the SPLs analyzed, rather
than in our approach. Further, our approach retrieved existing
dead codes that may help to find bugs and refactor SPLs.
The runtime performance was, on average, considering the
four target systems ≈63 and 0.2 seconds for the analysis and
propagation of a feature revision, respectively. Most of the
feature revisions propagated were interacting with more than
two feature revisions, and involved changes in multiple files,
and conditional blocks of code. We thus estimate that manu-
ally performing analysis and propagation of feature revisions
would take considerable effort and time, while our approach

can automate these tasks.

B. Tool Support Usefulness (RQ2)

After applying GT (online appendix [26]), we derived
conclusions and lessons learned, which were fundamental to
answering RQ2:
Need to propagate features between releases. This is not a
scenario for all systems, according to one of the developers. On
the other hand, for example, another developer mentioned that
“Maintaining different releases is necessary due to customers
that have, for example, a particular contract or hardware, and
make customers locked in a particular release.” For instance,
the original 1.1.x release (from Marlin) is still maintained as it
is used by the initial targets, i.e., Arduino boards. Propagation
is also necessary between releases because propagation of
features is performed by different developers than the original
developers: “Sometimes people ask us to propagate features
and we are like ‘no we do not have time to do that but you
are free to do it yourself’ [...] sometimes people will actually
try to do that on their own [...]. To make it would be nice
if things were easier for them so they could maintain some
version that they are using because some companies are stuck
on a particular version because of policy.”
Challenges in propagation of features in preprocessor-
based SPLs in VCSs. Developers agreed that propagating a
feature is difficult and hard to automate. This is because there
is no mapping between features and segments of code, i.e.,
VCSs do not keep track of #ifdefs. Further, extracting feature
dependencies in preprocessor directives is difficult. Developers
mentioned right in the beginning of the interview, before even
knowing about our tool, that: “The mapping between features
and the segments of code will make propagation easier.” and:
“Tooling in C/C++ is poor. New tools are most welcome.”
Developers confirmed existing studies [8], [17], [18] that the
use of preprocessor directives is painful: “I also know how
painful it is to deal with the CPP and I am sorry for you
dealing with the CPP. It is really a mess.” Developers always
try to ensure that the propagation is performed correctly by
running tests. However, depending on the system this is not
enough, for instance, for embedded systems: “Well, in the case
of Marlin, for the propagation of BLTouch feature, it would
be very nice to have access to the hardware itself so that I
can test the code running.”
Feedback on our tool support. Developers mentioned that the
tool meets its purpose and they would certainly try it when
propagation is needed: “It is great. I am amazed, I actually
wrote a tool that does some similar thing with #ifdefs and so
I am impressed because I know what is required to make that
work. That is impressive.” Another positive feedback about
our tool support is related to its interface: “I think it is really
helpful since it has a clear interface.” Furthermore, our tool
support can reduce the possibility of leaving necessary code
out and making mistakes: “That [the tool] would reduce the
need to do manual double checking of all the source code
changes, you can just run your tool to look at the overall
diff, make sure the diff looks reasonable, and run the tests.



It is going to speed up things dramatically.” Still, regarding
the visualization of differences of a feature between releases,
another developer said: “With your tool, it seems like you see
the bigger picture and then you can ‘grab and go’ into the
details.” Also according to one of the developers, our tool
support can be applicable for code reviews: “That is really
nice. That would help I think especially in code reviews, so
we are reviewing a piece of code, you are missing a lot of
the information and what you are looking for is the bigger
picture because you do not really want to go into like this
much detail, right? You do not want to run the code base in
your head basically to determine whether it works. I think
that would help certainly.” Developers reported that our tool
can automate part of a laborious task of reusing parts of a
feature implementation between two releases and thus save
hours of work: “This would save several hours of work for
this [analysis and propagation]. I mean, this automation is
great because it will be a big time saver.”
Limitations and improvements for our tool support. Our
tool supports developers to a great extent, but developers still
must double-check the deltas and decide which patches of code
to propagate. This was acknowledged by one interviewee: “It
is your part to decide which lines to be removed and what kind
of code should we move to the old branch [release].” Another
developer said: “A lot of human knowledge is required. I like
the idea of potentially automating it, but I think it is going to
be very difficult automating it 100%.” Therefore, even when
using our tool to automatically show and merge the differences
of a feature, there are still manual adaptations of the changes
that may need to be performed by developers. Suggestions
are proposed by developers to extend our tool support with
semantic analysis and a view of a dependency graph to know
what and how features are interrelated. For example, we
can enhance our approach with a directed dependency graph
based on the semantically annotated abstract syntax tree of the
source code [39], and a graphical interface with a graph view
for navigation on the graph nodes [40]. Regarding the tool
accessibility, developers suggested integrating it into GitHub
and also making it available for the command line.

Answering RQ2. What is the perception of developers regard-
ing the usefulness of our tool for the analysis and propagation
of feature revisions? All interviewed developers agreed that the
tool would be useful and save hours of manual work. Further,
developers reported that the tool has a clear interface that
helps to see the big picture of all the differences between two
releases associated with a respective feature, which would also
help in code reviews. In summary, the tool was evaluated by
the developers as a novel and a much-needed support, which
provides automation and is a big time saver. All the developers
affirmed that they would use the tool support whenever they
would need to propagate features.

VI. THREATS TO VALIDITY

Internal Validity. We propagated feature revisions over 200
random pairs of releases to evaluate our approach, which can

be a bias. However, we carefully analyzed the random combin-
ation of releases to make sure that at least one feature revision
was propagated, and that there was no pair of releases where
the origin was released right after the destination. Further, we
are proposing a novel approach to propagate feature revisions
and there is currently no other approach for comparison. To
alleviate this we conducted a study with developers. After
propagating feature revisions to a release, the SPL might
contain bugs and tests should be run. Anyway, this is already
necessary for the conventional development and evolution of
software systems. Moreover, as there is no way to completely
substitute tests and code review, methods and tools will be
necessary to assist them. The source code [21], data [22],
and supplementary material [26] are made available, and we
encourage researchers to replicate our study and improve our
approach for analysis and propagation of feature revisions.
External Validity. The selected systems can be a source of
bias. However, we do not attempt to generalize the scenarios
but use them as an experience report from real-world systems
to confirm the practical needs and validate our approach.
Further, we included these systems as they were recently
investigated in closely related work on feature evolution in
space and time [8], containing information useful for a pre-
liminary analysis of how much features have evolved in VCSs.
Nonetheless, the subject systems encompass diverse domains
and sizes and have been used also in other studies [1],
[10], [11], [19], [27], [28], [29]. Further, the systems we
used are C/C++ preprocessor-based SPLs available in VCSs.
These SPLs have a considerable history of commits involving
evolution in space and time.
Construct Validity. A potential threat pertains to the met-
rics used to assess the correct behaviour of our approach.
Precision and recall [30] have been widely used to assess
whether the information retrieved from existing approaches
to locate source code to feature(s) (revisions) is correct [11],
[41], [42]. In our study, the calculation of metrics depends
on our definition of true positives, false positives, and false
negatives. To be able to check whether the implementation of
a feature revision was successfully propagated, we considered
false positives and false negatives lines of code surplus or
missing, in relation to the correct sequences of lines of code
matching between a pair of releases. Regarding the qualitative
analyses, possible distortions when interpreting the data using
GT procedures pose a threat. To mitigate this, the GT coding
and categories were discussed by all the authors until reaching
a consensus, and we provide all the interview data in our
online appendix [26]. Regarding reaching data saturation to
stop further data collection, i.e., interviews, we followed
factors presented in [31], [32]. The reliability of the interview
data can be another threat to construct validity, which we
mitigate with a diversity of participants’ experience, degree,
and geographical location (information available in our online
appendix [26]). Further, we were able to interview two core
developers of two of the three systems analyzed, where one
of the developers did more than 70% of the total number
of commits, and the other developer has been contributing



for more than eleven years, with significant experience in
propagating features.

VII. RELATED WORK

Some tools were designed to support easier comprehension
of annotation-based systems by hiding annotations [43] or
using colors for visualization of features in the source code,
such as C-CLR [44], FeatureCommander [17], variation ed-
itor [45], PEoPL IDE [46] and CIDE [47]. Although these
tools can be used for better comprehension of annotated SPLs,
they do not analyze changes in commits and relate them to
the feature evolution in space and time. Dintzner et al. [48]
and Passos et al. [49] presented tools for mining information
of feature-evolution in a variability model, build system, and
source code. A Web tool called FeatureCloud [50] proposed
to mine and visualize changes in #ifdef blocks of systems in
Git repositories. Another related work is an empirical analysis
of feature-evolution presented by Michelon et al. [8]: the main
difference of our approach is that we analyze and propagate
feature revisions between releases. Michelon et al. [8] focus on
tracking the history of feature changes. Our approach intents
to give support to evolution in space and time of preprocessor-
based SPLs at the feature level.

Regarding propagation, Montalvillo & Dı́az [51] presented a
browser extension for GitHub synchronizing Java artifacts ver-
sions in different products forked from a core repository of a
Feature-oriented SPL. In the context of propagation/transplant-
ation of patches of code [52] and backporting [53] there exist
approaches for automating program repair. However, these
approaches automatically transfer patches between different
versions of preprocessor-based systems without taking into
account features annotated in the source code.

Gupta et al. [54] proposed an impact analysis approach
allocating tokens to the changes between two versions of
a system for estimating the impact of changes in the code
in a semantic way. Some studies focus on impact analysis
techniques based on dependency analysis [55], analyzing the
change in semantic dependencies between program entities.
For instance, Zhang et al. [56] presented a change analysis
for systems developed with AspectJ. Also, for change impact
analysis, Chianti [57] is a tool implemented in the Eclipse
environment, which uses test execution to infer modification
of the behavior of a Java system. Yet, compared to previous
work [58] we see that they used a different change analysis
of SPL evolution in Git VCS and their analysis counts the
number of modified lines containing variability in code, build,
and model artifacts. Their approach does not focus on the
lines modified per feature, and the feature interactions of a
delta between releases for C/C++ preprocessor-based SPLs.

Variation control systems [12] have been proposed to sup-
port the evolution of preprocessor-based SPLs or a family
of systems that arise from opportunistic reuse by copying,
pasting, and modifying without adopting any variability mech-
anism. For instance, Michelon et al. [11] presented the ECCO
variation control system as a tool support for tracking features
at multiple points in time to artifacts. However, these systems

have not become popular and adopted in practice, mainly,
because they are not mature enough with limited support for
collaborative and distributed development [12], [59].

There is related work combining the pros of clone-and-own
and SPL as well as synchronizing cloned variants to support a
more agile development with cloning and quickly prototyping
new variants [60], [61]. Therefore, the goal is to reduce the gap
between clone-and-own and SPL, which differs from our work,
which offers tool support for the analysis and propagation of
feature revisions between releases of preprocessor-based SPLs.
The variant synchronization and variation control systems can
be promising solutions for the main problem of evolution in
space and time. However, we focus on solving the current
challenges of preprocessor-based SPLs in VCSs, which are
currently more popular and well-known by developers.

VIII. CONCLUSION AND FUTURE WORK

We proposed a novel approach implemented in a non-
intrusive tool to automatically and efficiently reuse differ-
ent implementations of features in preprocessor-based SPLs
from one release to another arbitrary one. Our approach
provides (i) feature revision analysis between an origin and
a destination release, retrieving, for example, which files and
lines were modified/introduced/deleted and which feature revi-
sions were introduced/deleted/revised and affected by feature
interactions when propagating a specific feature revision in
space or time, and (ii) feature revision propagation advancing
in the reuse of evolution in space and time merging the
necessary lines of code differing between origin and des-
tination releases that affect a specific feature revision to be
propagated. We evaluated our approach performance, showing
that it reaches 99% precision and recall, taking on average for
the four target systems ≈63 and 0.2 seconds for performing
analysis and propagation of a feature revision, respectively.

We also evaluated our tool support by interviewing de-
velopers of preprocessor-based SPLs, who confirmed that the
analysis and propagation of features are challenging tasks if
performed manually. Overall, the developers’ feedback con-
firmed the usefulness of our tool and gave us future directions
toward extending our approach. For example, these included a
semantic impact analysis with a graph view of the source code
mapped to features, as well as making our approach available
as both a browser extension for Git VCSs and a command line
tool.
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“Multi-view editing of software product lines with peopl,” in 40th
International Conference on Software Engineering: Companion Pro-
ceeedings, ser. ICSE ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 81–84.
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