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ABSTRACT
Managing the evolution of system families in space and time, i.e.,

system variants and their revisions is still an open challenge. The

software product line (SPL) approach can support the management

of product variants in space by reusing a common set of features.

However, feature changes over time are often necessary due to

adaptations and/or bug fixes, leading to different product versions.

Such changes are commonly tracked in version control systems

(VCSs). However, VCSs only deal with the change history of source

code, and, even though their branching mechanisms allow to de-

velop features in isolation, VCS does not allow propagating changes

across variants. Variation control systems have been developed to

support more fine-grained management of variants and to allow

tracking of changes at the level of files or features. However, these

systems are also limited regarding the types and granularity of

artifacts. Also, they are cognitively very demanding with increas-

ing numbers of revisions and variants. Furthermore, propagating

specific changes over variants of a system is still a complex task

that also depends on the variability-aware change impacts. Based

on these existing limitations, the goal of this doctoral work is to

investigate and define a flexible and unified approach to allow an

easy and scalable evolution of SPLs in space and time. The expected

contributions will aid the management of SPL products and support

engineers to reason about the potential impact of changes during

SPL evolution. To evaluate the approach, we plan to conduct case

studies with real-world SPLs.

CCS CONCEPTS
• Software and its engineering→ Software product lines;Trace-
ability; Software reverse engineering; Reusability; Preproces-
sors.
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1 INTRODUCTION AND MOTIVATION
The increasing diversity of end-user needs leads to new require-

ments such as different platforms, operational systems, compilers,

and new/customized features, i.e., system functionalities. Hence,

companies must produce many variants of their software system to

fulfill such demand [25]. Software product line (SPL) engineering

is an approach often used to manage system families by systematic

reuse of a common set of assets [29]. In SPL features are the building

blocks used to distinguish its products, which characterize the sys-

tem variability. Variability mechanisms can be implemented with

language-based approaches, e.g., by feature-oriented programming,

which consists of a composition-based approach that decomposes

a system, ideally in one module or component per feature. The

system variability can also be implemented by tool-driven mecha-

nisms, such as version control systems (VCSs), preprocessors, and

build systems [1].

VCSs have been used to manage concurrent variants of a system,

i.e., products of an SPL, similar to a clone-and-own strategy, by their

branching, forking, and merging capabilities [6]. With branches,

the VCSs offer the management of variants as they enable to store

and to identify versions of components of a software. However,

each variant of a system is continuously maintained and evolved

over time, which leads to numerous revisions of the variant [35].

For instance, a revision of a variant can be the result of refactoring,

fixing a bug, improving a non-functional property, or adapting the

system to a new platform or environment. These revisions can lead

to many changes in one or more features or the common base code.

Thus, a modification of artifacts can involve the propagation of

changes and the need to merge these changes in multiple variants.

Therefore, managing system families with a unified mechanism to

address both system evolution in space and time is still an open

challenge in software engineering, directly affecting the activities

of developers and engineers and software quality [4].

Developing an SPL requires evolving the whole platform, which

can affect many variants. Furthermore, over time the number of

revisions and variants to handle increases, which implies dealing

with a higher number of logical expressions. Hence, it becomes a

cognitively complex task [16]. Existing mechanisms do not pro-

vide variability-aware change impact analysis. Thus, there is a

need for a unified approach providing mechanisms to manage sys-

tem families evolving in space and time. This approach should be

https://doi.org/10.1145/3382025.3414988
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able to propagate changes in an automated way with consistency

checking. Therefore, the goal of this doctoral work is to investigate

mechanisms and define an approach for easing the evolution and

management of system families in space and time.

In this way, we will investigate and propose solutions for the

maintenance and evolution of SPLs by versioning systems at the

level of features. Hence, managing versions of variants at the level

of feature revisions will result in different implementations for the

same features. Therefore, our proposed approach will provide a

mechanism to identify the kinds of modification of features and

to determine how these modifications affect existing variants con-

taining their previous revision. In the case of different behaviors or

feature interactions, a new revision must be added to the feature.

When the behavior remains, the changewill be permanently done in

the revision of the feature, but recover the previous implementation

must be possible. To check inconsistencies and valid configurations

of feature revisions, our proposed approach also aims to provide a

reverse engineering mechanism to retrieve a feature revision model

from existing system variants. We thus will cope with integrated

mechanisms in the VarCS to reflect the problem space through fea-

ture models containing feature revisions. Finally, we will conduct

experiments with real-world scenarios, namely actively-developed

open-source projects, to evaluate the usefulness of the proposed ap-

proach. We have already performed an empirical analysis of feature

evolution. We assume that managing an SPL at the level of feature

revisions may ease the maintenance and evolution tasks [24]. We

also have conducted an evaluation of an existing technique and tool

for locating feature revisions [24], which is an essential previous

step to come up with a solution for automating the propagation of

changes over variants.

We expect by this doctoral research to contribute to the state-of-

the-art and practice by: (i) providing support for software system

developers to determine and understand the impact of system fami-

lies’ evolution; (ii) empirical analyzing the need of evolving system

families by dealing with feature revisions; (iii) easing the manage-

ment of products of an SPL by means of feature revisions; and (iv)

motivating tool developers to implement instances of our approach

to managing system families evolving in space and time.

The remaining of this paper is structured as follows: Section 2

discusses existing mechanisms and their limitations for managing

system families in space and time. Section 3 states clearly our re-

search goal and describes the intended research methodology, as

well as the proposed approach and its evaluation. Section 5 presents

the preliminary results achieved so far. Finally, in Section 6 we show

our work plan outlining the steps until the doctoral defense.

2 STATE OF THE ART
Modern VCSs can help to deal with versions (change history), but

they are limited to aid the variability management of artifacts at

a higher level of abstraction, such as the feature level. Yet, they

do not properly support unified and integrated management of

artifacts of an SPL, such as keeping traceability between variability

information (e.g., feature models) and the specific type of artifact

(e.g., source code). However, as systems rarely consist of a single

type of artifact, it is necessary to use additional mechanisms to

manage and evolve all artifacts based on individual features of an

SPL [16]. Currently, VCSs are limited on providing mechanisms to

deal with preprocessor directives (#ifdefs) to maintain (e.g., bug

fixing) and to evolve system variants (e.g., adding a cross-cutting

feature). There is no clear separation of concerns and preprocessors

only operate on textual implementation artifacts like source code

and cannot be used for models or diagrams [16]. Furthermore, an-

notations based on preprocessor directives can be error-prone, as

they lead to subtle syntax errors (e.g., when an opening bracket is

annotated without its corresponding closing one) [22]. Due to these

limitations, we can find in the literature the proposal of variation

control systems (VarCS), which provide capabilities to integrate the

management of revisions and variants of software. However, they

also have limitations, such as support to specific types and granu-

larity of implementation artifacts [16]. Furthermore, according to

the survey of Linsbauer et al. [16], there is not enough evidence

demonstrating their success in real-world scenarios. This lack of

practical evidence may hinder or not motivate the use of VarCS. In

addition, VarCSs do not consider the concern of developers to be

dependent on a particular style of artifact repository assumed by

these systems. Thus, an approach that offers a unified mechanism

for managing system families in both space and time is still missing

in the literature and needs to be further explored [4].

3 RESEARCH METHODOLOGY AND
APPROACH

Aiming to find possible solutions for the challenging management

of system evolution in both space and time, our research is guided

by an overall research goal:

RG. Supporting the management of system families evolving
in space and time at the level of feature revisions.

To support the system evolution in space and time, our research

methodology involves several steps. Firstly, (i) understanding how

features of systems evolve in space and time, in terms of their im-

plementation and behavior, by empirically analyzing the extent and

context of feature evolution. Secondly, (ii) proposing an approach

to deal with feature revisions in SPLs, by easing the management of

system families evolving in space and time. Lastly (iii) conducting

case studies with the proposed approach for evaluating its useful-

ness in practice. Next, we explain in more detail how we intend to

carry out each step of our empirical analysis. We also present in

detail the proposed approach, discuss important implementation

aspects, and show how we intend to evaluate it.

3.1 Empirical Analysis of Feature Evolution
Based on the assumption that a specific feature at different points

in time can have multiple implementations and introduce different

and additional system behaviors, we have pointed out the need for

managing system families at the level of feature revisions. Thus,

we have been conducting an empirical analysis of the feature life

cycle and experiments with system families with a set of feature

revisions from a real-world scenario. The empirical analysis consists

of mining howmuch and in what context features change over time.

3.1.1 Mining how much features change over time. The goal of this
step is to investigate how much features change over time in terms
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of size, complexity, and behavior. This will help to comprehend how

developers implement, maintain, and evolve features over time and

help us to be aware of how to improve existing mechanisms for

managing SPLs in space and time. For collecting this information,

we need a tool able to mine feature revisions. We have already made

progress on mining information on feature revisions by developing

a tool to investigate the frequency of feature changes, the scope

of feature modification, and the impact of changes in feature vari-

ability and complexity of SPLs in VCSs. Our tool can analyze the

life cycle of features overall commits of C/C++ preprocessor-based

systems managed in a VCS. We start the mining process by cloning

the system repository. To collect information from the repository,

we capture all commits of all releases and preprocess every C/C++

source file to get a clean version of the annotated code from macro

definitions and functions. We adopt a strategy to get the features

that belong to a specific block of code. Therefore, we need to ana-

lyze every feature annotated above the specific block of code that

changed and has interaction with the feature from the changed

block expression.

Figure 1 shows an example of conditional blocks, which allows

us to explain our strategy. External features are the ones that can

be selected or deselected as a configuration option in a variant. The

internal features, then, are the ones that are defined at some point in

the source files. In Figure 1 the features A and Y are external while B,
X and C are internal. If a change happens in the conditional block in

line 9 (the file on the left side of Figure 1), we analyze every feature

that has an impact on activating the block of code in line 8. A queue

of implications is created by an extraction process of configuration

constraints from code [28]. To create the queue of implications,

we analyze every condition above the conditional block of line 8

and the header file included, which contains #defines of features.

The #defines directives also must be considered, as the feature X
in the enclosing conditional block. The expression of the changed

conditional block contains feature B that is defined if feature A is not
defined. It also contains the feature C that is defined in the #include
file, if feature Y is selected. In this example, we create a queue of

implications for feature B where it will contain the implication:

(¬A =⇒ 𝐵 = 10) ∧ (A =⇒ ¬𝐵). In cases of having #else, we
concatenate in the same way placing as 𝑒𝑙𝑠𝑒𝑃𝑎𝑟𝑡 : (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =⇒
(𝐿𝑖𝑡𝑒𝑟𝑎𝑙 = 𝑉𝑎𝑙𝑢𝑒)) ∧ (¬𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =⇒ 𝑒𝑙𝑠𝑒𝑃𝑎𝑟𝑡).

The example shows that manually solving constraint satisfac-

tion problems quickly becomes a time-consuming, complex, and

error-prone task if many constraints and variables are involved in

a block of #ifdef. When features are spread across many files, and

in addition to it have the influence of many defined features inside

header files and/or inside many blocks of #ifdef, it is infeasible to
manually determine the impact of changing a block of code on other

features. Feature expressions may also involve arithmetic opera-

tions and comparisons with numeric values (in the range of integers

or double),. Thus, Boolean satisfiability (SAT) solvers [27] are not

sufficient and constraint satisfaction problem (CSP) solvers [3, 32]

are needed to find possible solutions from the programming con-

straints. We used the CSP Choco Solver
1
. In case that conditions are

not satisfiable and do not have a solution to which features belong

to which block of code, we know that a specific block of code is

1
https://github.com/chocoteam/choco-solver

#include	"header.h"
(...)
#if	!defined(A)
		#define	B	10
#endif
(...)
#if	X
		#if	B	>	9	&&	C	>	5
				<code>
		#endif
#endif

1
2
3
4
5
6
7
8
9
10
11

(...)
#define	X
(...)
#if	Y
		(...)
		#define	C	6
		<code>
#endif

1
2
3
4
5
6
7
8

Figure 1: Example of conditional blocks.

dead code, i.e., is never executed [34]. Then, the solver receives

the queue of implications built for each feature that influences on

activating the changed conditional block, and we also send the ex-

pression that we would like to have a solution, i.e., to which feature

a changed code belongs to. In this example, we concatenate the

expression from the changed conditional block in line 8 with its

enclosing parent in line 7 and with BASE, because in case we do not

have any closest external feature to a specific changed conditional

block we get a solution that the specific changed conditional block

belongs to the BASE feature.

3.1.2 Mining what kinds of changes were made to features over
time. Besides analyzing feature evolution, we want to identify at

which level of granularity each change was performed and in which

context the change modified the feature, i.e., refactoring or bug

fix. This information is important to analyze the impact in the

system behavior when using a feature revision at one point in

time with revisions of features at another point in time. Hence,

this information can stress the need for better mechanisms and

tools for managing feature revisions. Thus, we can conduct static

analysis on the feature implementation and dynamic analysis on

the system behavior, before and after a change on a feature. Hence,

we will be able to not only mine tangled changes at a specific

point in time as well to classify features changes over time. If a

feature implementation differs syntactically from one point in time

to another, it may be a refactoring change to run the system faster

and/or to make the code more readable. When a change is related to

a bug fix on a feature, thus it may be related to a semantic difference,

because a bug fix changes the feature behavior, and consequently,

the system behavior [13].

Initially, to do this analysis, we will analyze commit messages

to see if it is a bug fix and with static semantic analysis on the

blocks of code that changed to check if it is a refactoring change.

As mentioned by Herzig and Zeller [10], some commits of a system

can consist of tangled changes in VCSs history, which lead to an

incorrect association of changes with bug reports on commit mes-

sages. Hence, a commit can be related to changes in more than one

feature, and the commit message not always reflects which features

and which kind of changes were performed on them. Thus, we will

also investigate some existing approaches for bug and refactoring

detection to get more accurate information about features changes

over time [36]. One possible attempt is to use a deep learning tech-

nique for training a neural network by using as input two chunks

https://github.com/chocoteam/choco-solver


SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Gabriela Karoline Michelon

of code (the code before and after the change) and as output which

kind of modification it is. Ludwig
2
is an easy-to-use tool that en-

ables us to quickly train and test deep learning models [26]. We

can also rely on existing tools for clone detection, which enables us

to identify the kind of change performed in a feature at a specific

point in time. Clone detection approaches can be split into two

categories: static analysis based approaches and dynamic analysis

based approaches [14].

3.2 Approach Definition
An SPL consists not only of a concrete implementation of the sys-

tem with different kinds of artifacts (known as the solution space)

but also artifacts of the problem space depicting the interactions

and dependencies of the system’s features [1]. Therefore, our pro-

posed approach, illustrated in Figure 2, helps to deal with the SPL

engineering process in both problem and solution spaces. We split

our approach into four main steps, where (1) focuses on the prob-

lem space and aims at reverse engineering a feature revision model

from existing products of a system. Steps (2), (3), and (4) focus on

the solution space and support the implementation and evolution

of artifacts as well as the composition of products. The following

sub-sections describe these steps in more detail.

3.2.1 Reverse Engineer of a Feature Revision Model (1). To help de-

velopers in deriving new variants using feature revisions, we need

a mechanism to retrieve valid combinations of feature revisions.

Thereby, we need to extend and adapt feature models to reflect

the implementation of feature revisions. Thus, our approach will

include a mechanism to reverse engineer feature revision models

from existing variants of a system, according to their changes over

time. The feature revision models should represent the feature sets

of an SPL at many points in time. To have the information necessary

to retrieve a feature revision model we will use as input (1.1) a set

of existing variants and their respective configurations containing

feature revisions. A revision of a feature will be a number represent-

ing that a specific feature changed, i.e., a revision will represent the

feature at a certain point in time. The reverse engineering process

will start by mapping the artifacts to feature revisions (1.2), which

we explain in more detail in Section 3.3. Then, we will store the

links showing which artifacts belong to which feature revision into

a repository. The mapping will result in traces (1.3), which will be

refined when committing a variant with a feature revision already

linked to artifacts in the repository. To compute the feature revi-

sion model we will analyze the feature revisions’ dependencies and

interactions (1.4). The output feature revision model can then be

retrieved (1.5).

3.2.2 Derive a new Variant (2). After using all system products

to extract the existing feature revisions in the current family of

systems (Step 1), we will be able to derive variants with different

configurations. Hence, developers can manage an SPL evolving in

space by combining different existing feature revisions. The input

necessary for deriving a new variant will require a configuration

with desired feature revisions (2.1) and an existing feature revision

model stored in the repository (2.2). Then, the configuration will be

checked if it is valid or not (2.3). In the case of a valid configuration,

2
https://github.com/uber/ludwig
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Figure 2: Workflow of the proposed approach for managing
products of an SPL with a set of feature revisions.

the variant will be retrieved (2.4) as output (2.5). In the case of

inconsistencies between choosing feature revisions, a warning will

be raised (2.6). The warning will make developers aware that there

is a missing or additional feature revision in the configuration.

3.2.3 Commit a feature (3). For evolving a variant, the approach
will also contain a commit operation for an individual feature. The

https://github.com/uber/ludwig
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input for this step will be the name of the feature and its correspond-

ing new artifacts (3.1). Then the new artifacts will be committed (3.2)

with previous analysis. If the feature already exists in the repos-

itory, i.e., it is already a feature of the SPL and possibly part of

some products, a modification analysis will be performed (3.3). The

modification analysis consists of verifying the change impact of the

new implementation of the feature. When dependencies or inter-

actions are added and/or removed the feature revision model will

be updated (3.4). In case of a refactoring change, the feature will

continue with its current revision as its behavior remains. When a

feature behavior changes, e.g., due to a bug fix, its revision will be

incremented (3.5). The history of the feature revision will be always

stored when committing changes (3.6). This history and traces will

be stored in the repository. The traces (3.7) will be used then to

propagate changes over the existing products of the SPL.

3.2.4 Propagate Changes (4). When an existing feature is commit-

ted, it will contain a new revision, which means, the feature evolved

over time and, consequently, some existing variants must be up-

dated with the new implementation of the feature. Thus, developers

must be able to visualize the new interactions and dependencies

added and/or removed by the new revision of the feature (4.1). Next,

the needed variants to be updated with the new revision of the fea-

ture can be selected (4.2) to evolve with the changes over time (4.3).

Finally, the information that will be stored about existing affected

variants of the SPL will be updated (4.4) with the artifacts evolved

over time. Then, the repository will contain new artifacts for each

variant (4.5) and can be automatically retrieved (4.6), resulting in

the new revisions of variants (4.7).

3.3 Implementation Aspects
Based on the analysis of existing VarCS [16] we selected ECCO [9,

17–19] as a foundation for implementing our approach. ECCO
3
is

an open-source tool and supports re-engineering variability from

cloned variants by systematically and automatically reusing arti-

facts from existing system variants. ECCOprovides feature-oriented

functions to commit and checkout variants. Currently, the commit

function expects the variant artifact and a configuration containing

at least the feature BASE (which denotes the common artifacts of

system variants) for updating the artifacts in the ECCO repository.

ECCO maps feature revisions to artifacts by a mechanism imple-

mented and shown in our work [24]. We thus will briefly explain

this already implemented mechanism, which is a prerequisite for

developing support for system families evolving in space and time.

Locating Feature Revisions: The approach needs two pieces of

information: (i) the implementation of every existing variant; and

(ii) the set of features and their respective revisions of each variant.

To illustrate what are the feature revisions, we show the example

in Figure 3. There are three variants as input data. The circle on

the left represents a variant with feature revisions 𝐴1,¬𝐵,¬𝐶 . The
variant represented by the circle in the middle has feature revisions

𝐴2, 𝐵1, 𝐶1, and the variant represented by the circle on the right

has feature revisions ¬𝐴, 𝐵2, 𝐶1. The features A and B have two

revisions, which means they do not have the exact implementation

as they already had before, e.g., feature 𝐴2 can be a new revision of

3
https://github.com/jku-isse/ecco.git

a3 a5

a7

a6

a2

a4 a8

a1

A1 A2

B1

C1

B2

Figure 3: Artifacts of variants mapped to feature revisions.

the feature𝐴 due to a bug fix and/or refactoring in its artifacts. The

feature location approach is based on the comparison of common-

alities and differences between the artifacts of variants and their

feature revisions. The artifacts of variants are organized in a hierar-

chical tree structure, which we refer to here as an artifact tree. An

artifact can be any type of variant’s implementation. In the source

code, an artifact can be represented as a class node, a method node,

or a single statement node in the tree structure. The commonalities

and differences between the variants are analyzed by the Longest

Common Subsequence (LCS) algorithm. Presence conditions are

assigned for mapping artifacts of variants (as shown in Figure 3:

𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8) and feature revisions (as shown in Fig-

ure 3: 𝐴1, 𝐴2, 𝐵1, 𝐵2,𝐶1). The presence conditions are computed for

each artifact as a disjunctive normal form (DNF) formula.

Thus, our proposed approach will add new functionalities into

ECCO to also depict the problem space of committed variants based

on feature revisions. Furthermore, it will check if the configuration

is valid before checking out a new variant. Committing an individual

feature is also a new improvement, as ECCO currently needs as

input to commit features an entire variant, with its feature revisions

and BASE feature. To ease the propagation of changes over system

variants we will also provide an automated mechanism to update

existing variants containing a new revision of a specific feature.

Next, we will explain in more detail how we plan to develop the

new functionalities proposed in our approach.

Reverse Engineer of a Feature Revision Model: To implement the

feature revision models, we will study a mechanism to retrieve

the assets’ dependencies of each of the feature revisions to find

the relations between them. We also need to study how to retrieve

feature revision models where their combinations are indeed well-

formed. Similar to previous work from Assunção et al. [2], we plan

to reverse engineer variants into feature models. However, we will

use the source code of feature revisions, hence, the feature models

will depict the problem space of an SPL developed with a common

set of feature revisions. With feature models representing specific

revisions of features, we can help to reduce the effort from configur-

ing both dimensions of variability in space and time. Expressing the

incompatibility of one version of a feature with versions of another

feature, similar to the Hyper Feature models, proposed by Seidl et

al. [33], must also be possible with the feature revision models.

We are just at the beginning of this step. Thus, our next task is

to survey the literature on existing (temporal) feature modeling

https://github.com/jku-isse/ecco.git
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approaches [11]. Next, we will select a strategy for implementing

feature revision models. Initially, as a first attempt, similar to Fe-

ichtinger et al. [8], we will use ECCO to compute the mappings

between features and source code. We also need an approach to

build the system dependence graph that contains all control and

data flow dependencies of a program for finding dependencies and

interactions at the level of features. Finally, to aggregate feature

dependencies and interactions to suggest a feature revision model,

we can use an SAT solver to compute a solution based on the for-

mulated constraints. Thereby, by committing variants with existing

feature revisions to ECCO and finding feature dependencies and

interactions, we will be able to reverse engineer the variants to

feature revision models.

Additional functionalities The additional functionalities (Steps 2,
3, and 4) of our approach to be implemented in ECCO requires

adding a new entity model to store the history of features and vari-

ants of an SPL. To check the validation of a configuration when

deriving a new variant (Step 2) wewill take into account the Boolean

constraints obtained with the feature revision model approach and

dependencies and interactions of the feature revisions. The op-

eration of commit an individual feature (Step 3) will use a static

and dynamic analysis, which we plan to develop as mentioned in

Section 3. The new added and/or removed interactions and depen-

dencies of the feature will be synchronized with the current feature

revision model which also must be stored in the repository (as an

XML file). In case a feature is modified by refactoring we will just

store in its history the date, developer information, and the new

implementation. The feature will be linked with all its revisions.

Each revision will contain information regarding the date, devel-

oper, and traces corresponding to the commit, i.e, that specific point

of evolution in time. When a modification impacts on a different

feature behavior we will add a new line for the new revision ID to

the revision table, which is linked with the specific feature ID, and

also contains revision information. The changes on a feature can

be propagated over variants (Step 4) by storing information in the

repository for every variant already committed and checked out.

The information stored will link for each variant an ID, which also

can have many revisions. The variant revision is linked with its

respective feature revisions at a specific point in time. Thus, when

propagating changes the link stored with an ID of each variant

revision and their feature revisions will be updated with the last

revision ID of the feature. Then, by the checkout operation, the

traces retrieved for the variant will be updated according to the new

revision of the feature. Hence, the variant composed will contain

the artifacts with the last changes performed over time.

4 APPROACH EVALUATION
For evaluating the usefulness of our approach to manage system

families evolving in space and time, we will experiment the new

functionalities to be implemented in the ECCO tool. Thus, we need

variants and their configurations, i.e., feature revisions. For this

evaluation, we will use case studies with ground-truth variants

generatedwith ourmining tool. Themining tool can retrieve feature

revisions from SPLs in VCSs, as illustrated in Figure 4. For the

entirely proposed approach, we plan to evaluate it by conducting a

case study with a realistic environment. The case study will consist

Mine	feature	
revisions

Preprocess
variants

Before
change

After
change

Git
Commit ConfigsConfigsConfigs

TracesTracesVariants

Figure 4: Process for mining ground-truth variants with a
set of feature revisions for preliminary analysis of the ap-
proach.

of the use of the suggested approach implemented in ECCO by

developers of an industry partner. Firstly, developers must use the

tool for locating feature revisions from existing system variants.

Then, developers must manipulate features individually, access

the history of features, and try to propagate their changes over

variants. Also, they must use the tool to derive variants with new

configurations of existing feature revisions. Lastly, we will get

feedback from the developers of the industry partner and conduct

an empirical analysis of the usefulness of the approach in practice.

5 PRELIMINARY RESULTS
To the best of our knowledge, there are no existing studies on

feature location techniques and feature models taking into account

feature revisions. As mentioned by Hinterreiter et al. [11] it is

essential to consider feature revisions in an SPL because features

are constantly evolving. In this way, we contribute with the state of

the art to mitigate this new assumption to treat revisions of features.

To support this new concept, we also made improvements to our

mining tool to understand how features have been evolved in SPLs

overall commits in VCS. We have done an empirical analysis of the

features’ life cycle, which was reported in a study [24]. We also

evaluated a technique for locating feature revisions, which results

are also described in our work [24]. Next, we will describe briefly

the achieved results.

5.1 Mining feature evolution in space and time
Our mining study of feature evolution over time in SPLs in VCS

shows that a specific feature from one commit of one release can

be very different from another commit of another release. This

information supports the new concept of feature revision to the

state-of-the-art. We mined open-source C/C++ preprocessor-based

systems and computed common metrics from previous research

[7, 12, 15, 20, 30, 31] to avoid varying definitions and to not limit

the applicability and comparisons with our work. Based on the

information mined, we have been analyzing feature evolution in

space and time, i.e., when features are introduced, modified, or

removed overall commits of a system. We measured the scope of

feature modifications and some characteristics of features overall

commits to quantify how much the features have been changed and

at which level of complexity they have been implemented. As a re-

sult of the informationmined, we identified for all systems analyzed,
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different sets of features, and many revisions across the systems’

releases, representing the evolution of features both in space and

time. We also analyzed some correlations of changes, which gave

us an interesting empirical analysis on how this information can

help to analyze tendencies of change impacts. Furthermore, as a

result of this work, we provided insights that can help enhance

existing VCSs to support feature-oriented development consider-

ing feature revisions. We also contribute to the availability of our

dataset mined, which can be used as a basis for new studies.

5.2 Evaluating the efficiency of a technique for
locating feature revisions

For preliminary experiments for evolving variants containing a set

of feature revisions, we first evaluated the technique for locating

feature revisions implemented in ECCO. To evaluate the technique,

we needed a ground truth, which enables us to compare the re-

trieved artifacts from the traces located by the feature revision

location technique. Furthermore, the ground truth variants cannot

be at a single point in time, as we aim to evaluate our approach

to managing system evolution over time. Thereby, to get variants

that contain features at different points in time, we mined variants

from VCSs that contain one to multiple features evolved in time,

by using our mining tool developed (see Section 3.1.1). We chose

open-source SPLs using the VCS Git with a considerable history

of development, which has been used in previous works. By gen-

erating a considerable number of variants with feature revisions

accordingly to changes on features made on VCSs, we compared

the artifacts retrieved by our feature location technique with the

artifacts of the ground-truth variants. The artifacts were compared

at two levels of granularity: file and line. These levels of granularity

have been chosen because we not only analyze C/C++ files changed

but also treated binary files and other text files changed in each

Git commit considered. In addition, our empirical analysis showed

that features have been changed over time by adding or removing

an entire file and/or fewer lines. The information retrieved from

the mapping between artifacts and features in relation to the rel-

evant information was compared by measuring precision, recall,

and F1 score, which are metrics commonly used to evaluate feature

location techniques [5, 21, 23]. In summary, we achieved higher

precision and recall for information retrieved from the systems’

variants, ranging from 99%-100% and 93%-99%, respectively, at file-

level and line-level granularity. When investigating why we could

not reach 100% precision and recall we found that this is due to

some feature interactions, i.e., we did not consider if features are

from the same #if #else block when combining them. Thus, as the

preprocessor disregarded the #else block when the #if condition

is satisfied, our ground truth variant will not contain all the features

artifacts. In the case of missing artifacts in the composed variant,

we have implementation limitations with the LCS algorithm. This

algorithm is not perfect and can make some wrong alignments in

the comparison process to refine traces. Thus, our proposed ap-

proach to reverse engineer variants into the feature revision model

will allow us to analyze which feature revisions can be combined.

Then, we will be able to check inconsistencies between feature

revisions of a configuration and, hence, to compose valid variants.

Table 1: Schedule of the work plan for each step of this doc-
toral research.

Step Status Start Finish

1 - Mining feature evolution Completed 07/19 06/20

2 - Locating feature revisions Completed 09/19 04/20

3 - Mining change impacts In progress 07/20 12/20

4 - Implementing approach To start 01/21 10/21

5 - Evaluating approach To start 11/21 02/22

6 - Writing doctoral dissertation To start 02/22 05/22

6 WORK PLAN
This doctoral research started in May 2019. We scheduled in six

steps our work plan until the defense, as presented in Table 1. So

far, we defined a technique for mining feature revisions in SPLs

with C/C++ preprocessor directives. We used the mining technique

for empirical analysis of the feature evolution (Step 1) and for eval-

uating the technique for locating feature revisions already imple-

mented in ECCO (Step 2). We will conduct more empirical analysis

on feature evolution to understand how the changes affect the be-

havior of the systems (Step 3). We expect to survey enough feature

evolution information after improving our mining tool and conduct-

ing more empirical analysis. This remaining empirical work must

be completed up to the end of this year. We thus plan to submit the

results for a conference. After, we plan to start in January of the

next year the implementation of our proposed approach (Step 4),

which will consist of adding the new functionalities (see 3.3) into

ECCO. The plan is to finish the proposed approach up to October

2021. Then, as the following step, we will evaluate our approach

by conducting a case study with a real-world scenario (Step 5). We

intend to submit the results of the Step 4 of reverse engineering

feature revision models from variants to either an international

journal or a conference. The complete results and empirical evalua-

tion of the entire approach proposed, obtained from Steps 4 and 5,

is planned to be reported in a journal article, focusing on qualitative

and quantitative analysis of our approach. Finally, we plan to start

writing the doctoral dissertation (Step 6) in February 2022, when

we believe the previous steps will be all completed. We hope to

finalize Step 6 in May 2022 and defend the doctoral dissertation in

June 2022.
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