
Locating Feature Revisions in Software Systems
Evolving in Space and Time

Gabriela Karoline Michelon
1,2
, David Obermann

1
, Lukas Linsbauer

3
,

Wesley Klewerton G. Assunção
4
, Paul Grünbacher

1
, Alexander Egyed

1

1
Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria

2
LIT Secure and Correct Systems Lab, Johannes Kepler University Linz, Austria

3
Institute of Software Engineering and Automotive Informatics, Technische Universität Braunschweig, Germany

4
COTSI - Federal University of Technology of Paraná, PPGComp - Western Paraná State University, Brazil

ABSTRACT
Software companies encounter variability in space as variants of

software systems need to be produced for different customers. At

the same time, companies need to handle evolution in time because

the customized variants need to be revised and kept up-to-date.

This leads to a predicament in practice with many system variants

significantly diverging from each other. Maintaining these variants

consistently is difficult, as they diverge across space, i.e., different

feature combinations, and over time, i.e., revisions of features. This

work presents an automated feature revision location technique

that traces feature revisions to their implementation. To assess

the correctness of our technique, we used variants and revisions

from three open source highly configurable software systems. In

particular, we compared the original artifacts of the variants with

the composed artifacts that were located by our technique. The

results show that our technique can properly trace feature revisions

to their implementation, reaching traces with 100% precision and

98% recall on average for the three analyzed subject systems, taking

on average around 50 seconds for locating feature revisions per

variant used as input.

CCS CONCEPTS
• Software and its engineering� Software product lines;Trace-
ability; Software reverse engineering; Reusability.

KEYWORDS
feature location, feature revisions, variants, repository mining

ACM Reference Format:
Gabriela Karoline Michelon

1,2
, David Obermann

1
, Lukas Linsbauer

3
,

Wesley Klewerton G. Assunção
4
, Paul Grünbacher

1
, Alexander Egyed

1
.

2020. Locating Feature Revisions in Software Systems Evolving in Space

and Time. In 24th ACM International Systems and Software Product Line
Conference (SPLC ’20), October 19–23, 2020, MONTREAL, QC, Canada. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3382025.3414954

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00

https://doi.org/10.1145/3382025.3414954

1 INTRODUCTION
The development of large-scale software systems relies on Ver-

sion Control Systems (VCSs), which offer sophisticated tool sup-

port for implementing, maintaining and evolving projects [17].

VCSs are essential for tracking the evolution of software systems

over time. However, in addition to evolutionary changes, i.e., re-

visions, software systems are also subject to re-configuration as

different combinations of features are relevant to different users.

Such systems are known as Software Product Lines (SPLs), which

are families of software products that share a common platform

and can be distinguished by a set of features [32]. SPLs are typ-

ically realized as Highly-Configurable Software Systems (HCSSs),

which use preprocessor directives, e.g., #IFDEFs; load-time para-

meters and conditional execution, e.g., simple IFs; or build systems

to generate different product variants [30]. HCSSs aim to satisfy

the requirements of different customers and environmental restric-

tions such as different hardware devices [36]. HCSSs need support

to evolve over time, e.g., when fixing bugs or extending existing

features, but also to evolve in space, e.g., when adding new features

or configuration options. However, it has been shown that existing

VCSs do not provide adequate support regarding the evolution in

space [4, 20, 24].

Research in the field of HCSSs focuses mainly on solving prob-

lems related to the evolution in space. For instance, approaches

for re-engineering legacy systems into SPLs typically consider that

variants diverge only in terms of the different features they imple-

ment [2]. Unfortunately, this assumption rarely holds in practice as

variants diverge both in space (different feature combinations) and

time (different revisions of features) [16]. Assume an engineer aims

to create a variant that uses older revisions of specific features. To

avoid analyzing large portions of the project history the engineer

needs to remember the exact point in time when the variant existed

containing exactly these features in the exact revision. Despite the

tools provided by the VCSs, this still remains a manual activity. In

this context, techniques supporting such re-engineering andmining

tasks are required.

Feature location techniques map system artifacts to features.

These techniques support the understanding, maintenance, and

evolution of features [2]. However, while existing feature location

techniques primarily address variability in space [8, 33], they are

not as useful when features evolved over time, leading to diver-

gent implementations [4]. To overcome this limitation, this work

presents an automated technique to trace feature revisions to their

implementation in variants that evolved independently of each

https://doi.org/10.1145/3382025.3414954
https://doi.org/10.1145/3382025.3414954

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Michelon et al.

other. Our technique considers possible combinations of features

and all revisions made over time.

The contributions of this work are: (i) a technique for locating

feature revisions in a set of variants; (ii) an analysis of feature

evolution over time in three preprocessor-based SPLs; and (iii) a

replication package
1
containing the used data set, the implementa-

tion for mining ground truth variants, and the implementation of

the feature revision location technique.

2 MOTIVATION
To motivate the need of locating feature revisions, we rely on the

feature HAVE_SSH1 of LibSSH2
. HAVE_SSH1 was introduced in Com-

mit c65f56ae
3
, comprising five source code files and approxim-

ately 600 lines of source code. Analyzing the history of this fea-

ture, we can observe that it has eight revisions. In some commits,

only small changes over time were observed, as, for example, in

Commit d40f16d4
4
, where the developers modified eight files, re-

moving two source code files of HAVE_SSH1. On the other hand,

in Commit f23685f9
5
, in addition to HAVE_SSH1, another feature

(DEBUG_CRYPTO) also changed over time, and two new features

(HAVE_PTY_H and HAVE_STDINT_H) were introduced, characterizing
the system evolution in space. Overall, the revisions of HAVE_SSH1
happened together with revisions of 13 other features, impacting 73

source code files. These changes were composed of 2627 additions

and 1223 deletions of lines of code. Let us assume an engineer wants

to recover a version of HAVE_SSH1 at a specific point in time, for

example, from Commit 5f7c84f9
6
. The engineer has to analyze 29

files, 1339 additions, and 188 deletions, which shows the complexity

of dealing with variable systems evolving over time. This problem

increases significantly if the system is not managed by a version

control system and not already implemented as a product line based

on features as in the above example. In the worst case, variants

are maintained independently as clones without proper revision

management.

A unified mechanism for managing system evolution in space

and time at the level of features would thus significantly ease the

maintenance and evolution of system variants. However, this is a

challenging task as already pointed out in existing literature [4]. In

this context, we stress the need of managing system variants over

time at the level of feature revisions and to ease the management of

features and their revisions. Therefore, we present a feature revision

location technique capable of mapping implementation artifacts to

a certain feature at a certain point in time.

3 FEATURE REVISION LOCATION
This section presents our automated feature revision location tech-

nique, which is the main contribution of this work. We first give an

overview and introduce basic data structures as well as input (i.e.,

variants) and output (i.e., traces) of the feature revision location

technique. Then, we explain the trace computation in detail. Finally,

we discuss the implementation and optimizations of the technique.

1
https://github.com/jku-isse/SPLC2020-FeatureRevisionLocation

2
Analysis based on the first 50 commits of LibSSH: gitlab.com/libssh/libssh-mirror

3
gitlab.com/libssh/libssh-mirror/-/commit/c65f56aefa50a2e2a78a0e45564526ecc921d74f

4
gitlab.com/libssh/libssh-mirror/-/commit/d40f16d48ec1ed9670c20ffaad1005c59a689484

5
gitlab.com/libssh/libssh-mirror/-/commit/f23685f92b91aa53546a81bf7793c38a45df15d3

6
gitlab.com/libssh/libssh-mirror/-/commit/5f7c84f900b81e3bbff55378f8170ddf150daf9c

Feature	
Revision
Location

Output	
TracesOutput

Traces
Output
Traces
Input	
Variants

(Configuration,
Implementation)

(Presence	Condition,
Implementation	Fragments)

Figure 1: Feature Revision Location Overview.

3.1 Overview and Data Structures
Figure 1 shows an overview of our feature revision location tech-

nique. As input it receives a set of variants, each consisting of a

configuration, i.e., a set of feature revisions, and an implementa-

tion. As output it computes a set of traces, each mapping a presence

condition to implementation artifact fragments.

Consequently, we assume the following to be known for every

variant: (i) the implementation; (ii) the set of features, i.e., the con-

figuration; (iii) the revision of every feature. The last assumption

is difficult to satisfy in an extractive product line adoption scen-

ario, where clones have been maintained independently over a long

period of time, as the necessary information must be retrieved first.

However, in a reactive product line engineering scenario, where

new variants are incorporated into the product line incrementally,

this assumption can be satisfiedwith reasonable effort. Furthermore,

variation control systems [20, 24], whose goal is to support the user

when making changes to a product line, can satisfy the assumption

and even profit from our feature revision location technique.

We now describe the concepts and data structures of our tech-

nique in detail.

Variants (Input). The input is a set of variants 𝑉 . A variant 𝑣 ∈ 𝑉
is a pair (𝐹,𝐴), where 𝐹 is a set of feature revisions and 𝐴 is a set

of implementation artifacts. As an example consider a set of three

variants 𝑉 = {𝑣1, 𝑣2, 𝑣3} shown in Table 1.

Table 1: Input Example: Set of Variants 𝑉 = {𝑣1, 𝑣2, 𝑣3}.

Variant 𝑣𝑖 Feature Revisions 𝑣𝑖 .𝐹 Artifacts 𝑣𝑖 .𝐴
𝑣1 {A1,B1,¬C} {𝑎1, 𝑎2, 𝑎3}
𝑣2 {A1,B2,¬C} {𝑎1, 𝑎2, 𝑎4}
𝑣3 {¬A,B2, C1} {𝑎4, 𝑎5, 𝑎6, 𝑎7}

Features and Revisions. Every feature 𝑓 exists in multiple revisions 𝑟 ,

denoted as 𝑓𝑟 , where 𝑓 and 𝑟 are arbitrary unique identifiers for

the feature and the revision, respectively. Two variants 𝑣1 and 𝑣2
with the same feature 𝑓 have the same revision 𝑟 of feature 𝑓 , i.e.,

feature revision 𝑓𝑟 , if the feature is implemented in the exact same

way in both variants. Absent, i.e., negated, features are not labeled

with a revision. While the absence of a feature can influence the

implementation of a variant, it makes no sense to label negated

features with a specific revision. A feature is either present (in

a specific revision) or simply absent. For example, variant 𝑣1 in

Table 1 has featuresA and B, each in revision 1. Variant 𝑣2 has the

same features, but feature B is implemented differently, e.g., a bug

fix might have been applied to feature B in variant 𝑣2 but not in 𝑣1,

and thus gets another revision assigned.

https://github.com/jku-isse/SPLC2020-FeatureRevisionLocation
https://gitlab.com/libssh/libssh-mirror
https://gitlab.com/libssh/libssh-mirror/-/commit/c65f56aefa50a2e2a78a0e45564526ecc921d74f
https://gitlab.com/libssh/libssh-mirror/-/commit/d40f16d48ec1ed9670c20ffaad1005c59a689484
https://gitlab.com/libssh/libssh-mirror/-/commit/f23685f92b91aa53546a81bf7793c38a45df15d3
https://gitlab.com/libssh/libssh-mirror/-/commit/5f7c84f900b81e3bbff55378f8170ddf150daf9c

Locating Feature Revisions in Software Systems Evolving in Space and Time SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Implementation Artifacts. A variant’s implementation consists of

a set of artifacts that are organized in a hierarchical tree structure

which we refer to as artifact tree. An artifact can represent a folder,

a file, or any other element of a variant’s implementation. For ex-

ample, in the case of source code, an artifact could represent a class,

a method, or a single statement. We assume that any two artifacts

𝑎1, 𝑎2 can be compared for equivalence (𝑎1 ≡ 𝑎2), as follows: two

artifacts 𝑎1, 𝑎2 ∈ 𝐴 are equivalent (𝑎1 ≡ 𝑎2) if 𝑎1 and 𝑎2 are equal

(𝑎1 = 𝑎2) and their parent artifacts are equivalent , i.e., their position

in the artifact tree is the same.

Traces (Output). The goal of our feature revision location technique

is to compute a presence condition𝐶 for every artifact 𝑎. The output
therefore is a set of traces𝑇 . A trace 𝑡 ∈ 𝑇 is a pair (𝐶,𝐴) that maps

a set of artifacts 𝐴 to a presence condition 𝐶 . Table 2 presents

an example solution of a set of six traces 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6}
that match the set of variants 𝑉 in Table 1. However, this is not a

unique solution as alternative sets of traces exist that also match

the set of variants 𝑉 . The three variants in 𝑉 are not sufficient to

determine a unique set of traces. For example, the trace 𝑡1 could

also have a more restrictive conditionA1 ∧¬C while trace 𝑡2 could

also have a less restrictive condition A1. For the three variants

in set 𝑉 this would make no difference. However, it would affect

other variants that may potentially be created in the future. The

actual output of our feature revision location technique shown in

Table 3 therefore contains all clauses that satisfy the criterion for

inclusion (see Equation 1), even if initially redundant. For example,

the condition in 𝑡1 could be simplified to just A1. However, since

the input variants were not sufficient to be certain that the actual

condition cannot be A1 ∧ ¬C it is still included in the condition.

Table 2: Solution Example: Set of Traces𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6}.

Trace 𝑡𝑖 Presence Condition 𝑡𝑖 .𝐶 Artifacts 𝑡𝑖 .𝐴
𝑡1 A1 {𝑎1}
𝑡2 A1 ∧ B1∨2 {𝑎2}
𝑡3 B1 {𝑎3}
𝑡4 B2 {𝑎4}
𝑡5 C1 {𝑎5, 𝑎6}
𝑡6 ¬A ∧ B1∨2 {𝑎7}

Table 3: Output Example: Set of Traces 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}.

Trace 𝑡𝑖 Presence Condition 𝑡𝑖 .𝐶 Artifacts 𝑡𝑖 .𝐴
𝑡1 A1 ∨ (A1 ∧ ¬C) ∨ (A1 ∧ B1∨2) {𝑎1, 𝑎2}
𝑡2 B1 ∨ (B1 ∧ ¬C) ∨ (A1 ∧ B1) {𝑎3}
𝑡3 B2 {𝑎4}
𝑡4 C1 ∨ (¬A1 ∧ C1) ∨ (B2 ∧ C1) {𝑎5, 𝑎6, 𝑎7}

3.2 Trace Computation
Based on the above data structures, we now explain how the traces

and presence conditions are computed.

Presence Conditions. We compute the presence condition 𝐶 for

every artifact 𝑎 in the form of a disjunctive normal form (DNF) for-

mula, whose literals are features (actually a set of feature revisions

as we will show). A DNF formula is a disjunction of clauses, where

a clause is a conjunction of literals. We treat presence conditions

as a set of such clauses. Every clause can be considered as a feature

interaction, i.e., a static interaction of the features contained in the

clause. This aligns with previous research in feature algebra [25],

feature location [22], or the analysis of variable systems [1, 11]. We

denote the set of all conjunctive clauses that can be formed given

a set of feature revisions 𝑣 .𝐹 of variant 𝑣 as 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 (𝑣 .𝐹). For ex-
ample, 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 ({A1,B1,¬C}) = {A1,B1,A1 ∧B1,A1 ∧¬C,B1 ∧
¬C,A1 ∧ B1 ∧ ¬C}. Whether a clause 𝑐 is part of a presence con-

dition 𝐶 for an artifact 𝑎 depends on some fairly intuitive ideas

that have already been proven to work very well for simple feature

location [28, 31]. In this work we build upon these ideas and extend

them to feature revisions. In the following, we first discuss the ideas

based on features, ignoring revisions for the time being.

Criterion for Inclusion of Clause in Condition. For a clause 𝑐 to be

contained in a presence condition 𝐶 of an artifact 𝑎, the artifact 𝑎

must be contained in every variant 𝑣 ∈ 𝑉 that contains the clause 𝑐

(𝑐 ∈ 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 (𝑣 .𝐹)) and there must be at least one variant in 𝑉 that

contains clause 𝑐 .

𝑐 ∈ 𝐶 ⇔ (∀𝑣 ∈ 𝑉 : 𝑐 ∈ 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 (𝑣 .𝐹) =⇒ 𝑎 ∈ 𝑣 .𝐴) ∧
(∃𝑣 ∈ 𝑉 : 𝑐 ∈ 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 (𝑣 .𝐹)) (1)

Criterion for Likely Clause. Our technique additionally provides a

smaller and more specific set of clauses 𝐶 ′ that is a subset of 𝐶 to

which the artifacts are more likely tracing than to others. This is

based on our observation that, in practice, presence conditions with

a logical OR between features are much less likely to occur than

ones with a logical AND [28]. Therefore, a clause 𝑐 ′ is contained in

the set of likely clauses𝐶 ′ if all variants that have clause 𝑐 ′ also have
artifact 𝑎 (inclusion criterion as above), and in addition, all variants

that have artifact 𝑎 also have clause 𝑐 ′ (additional criterion).

𝑐 ′ ∈ 𝐶 ⇔ (∀𝑣 ∈ 𝑉 : 𝑐 ∈ 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 (𝑣 .𝐹) ⇐⇒ 𝑎 ∈ 𝑣 .𝐴) ∧
(∃𝑣 ∈ 𝑉 : 𝑐 ∈ 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 (𝑣 .𝐹)) (2)

Adding Revisions. Extending the previous ideas to revisions is then

straightforward. Only one revision of a feature can be present in

any given variant. In other words, if a feature 𝑓 is present in a

variant 𝑣 it is present in exactly one revision 𝑟 . Therefore, the set of

revisions of a feature literal in a clause is the union of all revisions

𝑟 of feature 𝑓 that were present when the artifact 𝑎 was present.

Literals in clauses of a presence condition now do not refer to single

features anymore, but to a set of feature revisions.

Steps for Trace Computation. Algorithm 1 shows the steps of the

trace computation. It receives as input a set of variants 𝑉 . It then
computes the sets of all clauses𝐶 (Line 2) and all artifacts 𝐴 (Line 3

in the input variants𝑉 . Subsequently, it computes for every artifact

𝑎 ∈ 𝐴 (Line 5) a trace 𝑡 with conditions 𝐶 ′ and artifact 𝑎 (Line 19)

that is added to the set of traces𝑇 (Line 20) that is returned (Line 22).

The set of clauses 𝐶 ′ receives all clauses 𝑐 ∈ 𝐶 that satisfy the

inclusion criterion of likely clauses in Equation 2 (Lines 7-11). If

there are no such traces (Line 12) it receives all clauses 𝑐 ∈ 𝐶 that

satisfy the regular inclusion criterion in Equation 1 (Lines 13-17).

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Michelon et al.

Algorithm 1 Trace Computation

1: function computeTraces(𝑉)

2: 𝐶 ← ⋃
𝑣∈𝑉 clauses(𝑣 .𝐹)

3: 𝐴← ⋃
𝑣∈𝑉 clauses(𝑣 .𝐴)

4: 𝑇 ← {}
5: for each 𝑎 ∈ 𝐴 do
6: 𝐶 ′ ← {}
7: for each 𝑐 ∈ 𝐶 do
8: if (∀𝑣 ∈ 𝑉 : 𝑐 ∈ 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 (𝑣 .𝐹) ⇐⇒ 𝑎 ∈ 𝑣 .𝐴) then
9: 𝐶 ′ ← 𝐶 ′ ∪ {𝑐}
10: end if
11: end for
12: if 𝐶 ′ = {} then
13: for each 𝑐 ∈ 𝐶 do
14: if (∀𝑣 ∈ 𝑉 : 𝑐 ∈ 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 (𝑣 .𝐹) =⇒ 𝑎 ∈ 𝑣 .𝐴) then
15: 𝐶 ′ ← 𝐶 ′ ∪ {𝑐}
16: end if
17: end for
18: end if
19: 𝑡 ← (𝐶 ′, 𝑎)
20: 𝑇 ← 𝑇 ∪ {𝑡}
21: end for
22: return 𝑇

23: end function

3.3 Implementation and Optimizations
When applying the aforementioned concepts in practice, we per-

form the following optimizations:

Feature Interaction Limit. We limit the maximum size of clauses in

presence conditions, i.e., the number of feature literals in a con-

junction, which corresponds to the number of interacting features,

to a threshold based on previous empirical research [9, 11]. This

provides a major improvement to the scalability of the approach,

otherwise, i.e., without a constant threshold, the number of clauses

would grow exponentially with the number of features. While the

threshold can be freely configured, for the evaluation presented in

this paper it was set to at most three interacting features.

Negated Feature Literals. We do not label negated feature literals

with a revision. While the absence of a feature can influence other

features and thus have an effect on the implementation of a vari-

ant [25], it makes no sense to have a clause containing only negated

features and to label negated features with a specific revision.

Artifact Clusters. We do not consider every artifact individually,

but rather cluster artifacts, i.e., group artifacts together, that never

appeared without each other in any variant and assign presence

conditions to those clusters instead of every individual artifact. For

example, artifacts 𝑎1 and 𝑎2 in the set of variants𝑉 in Table 1 always

appear together and never without each other. We therefore group

them instead of treating them individually, as shown in Table 4.

Artifact Sequence Alignment. Our technique relies on the ability

to compare any two implementation artifacts for equivalence. In

cases where two sibling artifacts 𝑎1 and 𝑎2 (i.e., artifacts with the

same parent) are not unique, the order of the artifacts is important

when determining equivalence. This is the case, for instance, if the

same statement appears multiple times inside a method. In such

cases an alignment of the artifact sequences must be performed.

We adapted a Longest Common Subsequence (LCS) algorithm [7]

to perform multi-sequence alignment for comparing more than two

variants [9, 23], e.g., if they have the samemethodwhose statements

must be aligned.

Artifact Adapters. We keep the technique independent of the types

of implementation artifacts by utilizing artifact type specific ad-

apters that are responsible for parsing respective files and gener-

ating the generic artifact tree structure consisting of folders, files,

and further file type specific artifacts. The only requirement is that

artifacts can be uniquely identified and compared for equivalence.

Element Counters. We count for every clause 𝑐 in how many in-

put variants it was contained, for every artifact cluster 𝑎 in how

many input variants it was contained, and for every pair (𝑐, 𝑎) of
clause and artifact cluster in how many input variants both were

contained together. These counters are sufficient to evaluate the

above criterion for inclusion of clauses in presence conditions (see

Equation 1). This has the advantage that it works incrementally, i.e.,

new input variants can be added whenever necessary simply by

increasing the respective counters. Hence, already computed traces

do not have to be recomputed when a new variant is encountered.

Instead, the counters are simply increased and the existing pres-

ence conditions trimmed, i.e., clauses removed for which the above

conditions do not hold anymore.

Table 4 presents an abstract example of the counters that match

the set of variants𝑉 in Table 1. The rows list the four artifact clusters

with the total number of appearance in variants. The columns list (a

subset of) the clauses 𝑐𝑖 ∈
⋃

𝑣∈𝑉 clauses(𝑣 .𝐹) with the total number

of appearance in variants, sorted by the number of literals (i.e.,

interacting features), first in total without considering revisions,

and then per revision. Each cell contains the number of times that

the artifact cluster and the clause appeared together in a variant. For

example, artifacts 𝑎1 and 𝑎2 appear in two variants. The clause A1

also appeared in two variants. Finally, the artifacts and the clauses

appeared together also in two variants. Therefore, the criterion for

likely clauses (see Equation 2) is satisfied.

Table 4: Implementation Example: Subset (cut off right) of
Counters forArtifact Clusters (rows) andClauses (columns).

A B C A ∧ B B ∧ C
2 3 1 2 1

A1 B1 B2 C1 A1 ∧ B1 A1 ∧ B2 B2 ∧ C1
2 1 2 1 1 1 1

𝑎1, 𝑎2 2 2 1 1 0 1 1 0

𝑎3 1 1 1 0 0 1 0 0

𝑎4 2 1 0 2 1 0 1 1

𝑎5, 𝑎6, 𝑎7 1 0 0 1 1 0 0 1

4 EVALUATION
This section presents the research questions and the method ad-

opted for evaluating our feature revision location technique. We

Locating Feature Revisions in Software Systems Evolving in Space and Time SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

introduce the input data set, explain the process adopted to obtain

the ground truth used for comparison, and describe the metrics

used to evaluate our technique.

4.1 Research Questions
The evaluation of our feature revision location technique was

guided by two research questions (RQs), presented below. The next

subsections describe the methodology used to answer the RQs.

RQ1. Can the proposed technique locate feature revisions
from a set of existing variants? In this RQ we aim to evaluate

how effective our technique is for locating feature revisions in

existing variants of HCSSs obtained from VCSs.

RQ2. Can new variants be composed with feature revisions
located by our technique? The goal of this RQ is to investigate if

we can use artifacts, i.e., feature revisions, located by our technique

from existing variants to compose new variants.

4.2 Method
The methodology followed to evaluate our feature revision loca-

tion technique and answer the RQs is illustrated in Figure 2. We

started by mining ground truth variants (step 1) from changes of

features in HCSSs in VCSs (cf. Section 4.4). We then applied our

feature revision location technique to the ground truth variants

(step 2, cf. Section 3). The process of locating feature revisions was

performed incrementally with the input variants. Thus, as long as

we had different input variants, we used them for locating feature

revisions with our technique, which continuously created new an-

d/or refined existing traces. After having located feature revisions

from all existing input variants, we used the computed traces to

compose variants (step 3) by joining the artifacts of the desired

configurations. Next, we compared the composed variants with the

corresponding ground truth variants, i.e., containing the same con-

figuration (step 4). The comparison of variants was performed by

comparing each composed artifact with each ground truth artifact

file-by-file and line-by-line. For computing differences, we used a

library for performing the comparison operations between textual

Feature	
Revision
Location

Output
Traces
Output
Traces
Input

VariantsMining	Ground
Truth	Variants

Output	
Traces

Compose
Variants

Output
Traces
Output
Traces
Retrieved
VariantsCompare

Artifacts

Compute	
Metrics

Output
Traces
Output
Traces

Ground	truth
Variants

Ground	truth
Variants

Ground	Truth
Variants

Retrieved
Variants
Composed
Variants

1

2

3

4

5

Figure 2: Methodology for evaluating our feature revision
location technique.

Table 5: Overview of the subject systems.

System Release Since LoC Features Revisions
Marlin 2.0 2011 281355 37 144

LibSSH 0.9 2005 110590 49 129

SQLite 3.7.4 2000 173714 7 55

data
7
. Finally, we compute metrics (step 5) to quantify missing rel-

evant information or surplus information retrieved (cf. Section 4.5).

4.3 Data Set
The evaluation of the proposed technique relies on three open

source HCSSs [19] using the VCS Git (see Table 5): (i) Marlin, a

variant-rich open-source embedded firmware for 3D printers
8
; (ii)

SSH library, a Robot Framework test library for SSH and SFTP net-

work protocols
9
; and (iii) SQLite, a library that implements an SQL

database engine
10
. We tried to avoid bias by choosing three different

application domains. Furthermore, each system has a considerable

history of development and use in research [13, 14, 17–19, 27, 35].

Moreover, we choose systems of different sizes, which we meas-

ured by counting the total number of lines of code of their last

release (excluding blank lines and comments). We used variants

from the first Git commits from the main trunk ordered by date of

each system to avoid bias in choosing a specific interval of commits.

Despite our technique can be adopted for any number of variants,

our implementation currently has scalability limitations for high

number of feature revisions. Thus, we used variants mined from the

first 50 commits, which give enough feature revisions to apply and

evaluate the ability of our technique for locating feature revisions.

4.4 Mining Ground Truth Variants
Ground truth variants cannot come from only a single point in

time. Thus, in order to have input variants that contain features at

different points in time, we extract variants of a system whenever

a feature evolved over time, i.e., was changed via a Git commit [29].

To explain each step of the methodology for mining ground truth,

we will use the example shown in Figure 3. Let us consider that the

code of the file before the change in line 12 was added in a specific

point in time called T1. Later, a second commit was performed at

point in time T2, where the code of line 12 changed. We identify the

possible features in these two points in time. In this example, three

features are introduced in point T1 (BASE, A, Y) and one existing

feature changed in point T2 (Y revision 2). We used this information

to create our ground truth variants used as input for our technique

for locating feature revisions in five steps, described next.

Identify feature literals. To identify possible features, we classify all

annotated literals of the system along all Git commits analyzed. We

distinguish external, internal and transient literals. External literals

can only be set externally to configure variants. In Figure 3 A and Y
are external literals. Internal literals are defined at some point in

the code via a #define directive. In Figure 3 the literals B, C, X and Z

7
https://github.com/java-diff-utils/java-diff-utils

8
https://github.com/MarlinFirmware/Marlin

9
https://gitlab.com/libssh/libssh-mirror

10
https://github.com/sqlite/sqlite

https://github.com/java-diff-utils/java-diff-utils
https://github.com/MarlinFirmware/Marlin
https://gitlab.com/libssh/libssh-mirror
https://github.com/sqlite/sqlite

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Michelon et al.

		#include	"header.h"	
		#if	A
				#define	B	2
				#define	C	9
		#endif
		#if	Z
				#define	D
		#endif
		#if	Y
				<code>
				#if	X(B,C)	>	Z
-					<code1>
+					<code2>
				#endif
		#endif

		#define	Z	3
		<code>
		#if	Z	>	2
				#define	X(m,n)	m+n
		#endif

1
2
3
4
5
6
7
8
9
10
11
12
12
13
14

Variants	T1	and	T2

BASE.1
Y.2

BASE.1
Y.1

BASE.1
A.1

BASE.1

Figure 3:Mining changes over time to generate ground truth
variants to evaluate our feature revision location technique.

are internal. In commit #1
11

of LibSSH the file wrapper.c contains

15 conditional blocks (#ifdefs), from which only four expressions

contain an external feature (DEBGU_CRYPTO). The conditional block
with feature HAS_BLOWFISH, for example, is an internal feature

defined in the beginning of the file inside the conditional block of

an external feature (HAVE_OPENSSL_BLOWFISH_H). We considered

literals as features only if they were external in all revisions.

Resolving macros in conditions. For each analyzed Git commit, we

start preprocessing the annotated code respective to macro func-

tions (macros that can accept parameters and return values). The

output of this step is the code from the specific commit with all

macros in conditions resolved, i.e., the macro code is expanded

to the degree where the conditions of the conditional statements

only consist of literals. After expanding macros in conditions, all

#define and #include statements and conditional blocks remain

in the code, as they can modify the resulting code of the variants.

In Figure 3 the only line that will change after processing this step

is the line 11, which is replaced by #if 2 + 9 > Z.

Compute changes. For each Git commit n we create a tree structure

with the conditional blocks to determine the differences between the

actual commit and the previous n-1. In case of the first Git commit of

the project, we consider all files inserted as the difference. From the

differences we can get the tree node reflecting the changes. In case

that any external feature changed or differences are in non-code

files, e.g., binary, BASE is considered the changed feature, i.e., for

every code added/removed in the body of the project that does not

belong to an external feature the root feature BASE is considered

as the changed node. In Figure 3 a new file was added at point

T1 in addition to its include file. At point T2 we just have the

change in line 12 of the main file. For example, in LibSSH commit

#1 added 78 new files, commit #2
12

removed 8 files, while commit

#3
13

comprised changes of lines added and removed in different

files.

11
gitlab.com/libssh/libssh-mirror/-/commit/c65f56aefa50a2e2a78a0e45564526ecc921d74f

12
gitlab.com/libssh/libssh-mirror/-/commit/d40f16d48ec1ed9670c20ffaad1005c59a689484

13
gitlab.com/libssh/libssh-mirror/-/commit/55846a4c7b09af2d105c7f7dfd0a43aab2f6e5a5

Compute configurations. Every changed node is then used to gener-

ate a variant that contains the code activated by this node. We used

the Choco solver
14

to provide the first possible solution for a given

constraint to activate the conditional blocks. To find a configuration

for the preprocessor that activates the desired block of code, we

need to obtain an assignment for all the annotated literals that are

part of the condition of the block. The basic idea here is to create a

set of constraints that are then handed over to a solver. Overall, the

constraint we build consists of three parts, which will be explained

using the example in Figure 3. Firstly, we retrieve the local condi-

tion closest to the changed code, which in the example at point T2

is: 2 + 9 > Z. The second part is the entire condition of the desired

block, which is a conjunction of all parent conditions. We obtain it

by walking up the tree, starting from the changed node, which will

be: Y && (2 + 9 > Z). The feature implications make the third

part used to create and apply a mapping of all internal literals to

just external literals. In Figure 3, it can be seen that A defines B=2
and C=9, and BASE defines B=3, which means that we can map the

code block to BASE and Y and A. The process of traversing the tree

to build the feature implications works as follows: we read until

the end of the file. When a #define is found, we take the condition
of the block which it is part of. With this information, we build an

implication chain. Before handing this chain to the solver, we filter

out the ones that are not necessary for the currently processed node

to reduce the work for the solver. We do it by recursively analyzing

the literals of the conditional expressions that define other literals.

If they were defined at some point, we build their queue of implica-

tions too. For example, in Figure 3 we do not add to the queue of

implications the feature Z implying D in line 7 as this feature does

not influence to activate the changed block of code (lines 11-13). We

just need the implications of features implying Z, B and C. In commit

#1 of LibSSH, as mentioned before, the conditional block annotated

with feature HAS_BLOWFISH is defined inside another conditional

block of the external feature HAVE_OPENSSL_BLOWFISH_H. In the

example of this block of code changed, we will have a queue of

implications for feature HAS_AES, HAS_BLOWFISH and OLD_CRYPTO
as they are defined over the file wrapper.c. However, we just send
to the solver the queue of implications of feature HAS_BLOWFISH
which contains the necessary condition to define this internal fea-

ture ((HAVE_OPENSSL_BLOWFISH_H) && (BASE)).
The constraints built by the queue of implications are then

handed to the solver. If the solver finds no solution, it means that

the part of code we wanted to activate is dead and there is no con-

figuration that can activate that block. If a solution is found, we

validate that all the literals that get assignments are really external

by filtering out all other assigned literals. If the set of assignments is

not empty at that point, we obtained a configuration for a valid vari-

ant. Before using these variants as ground truth for evaluating our

technique it is essential to know what features should be marked

as changed for the respective changed node and thus treated as

a feature revision. We assume the features annotated closest to a

change are the ones having caused it. Therefore, we get a solution

using the local condition without any implications.

In case this does not obtain any potentially changed features,

meaning that there are no positive external features in the closest

14
https://github.com/chocoteam/choco-solver

https://gitlab.com/libssh/libssh-mirror/-/commit/c65f56aefa50a2e2a78a0e45564526ecc921d74f
https://gitlab.com/libssh/libssh-mirror/-/commit/d40f16d48ec1ed9670c20ffaad1005c59a689484
https://gitlab.com/libssh/libssh-mirror/-/commit/55846a4c7b09af2d105c7f7dfd0a43aab2f6e5a5
https://github.com/chocoteam/choco-solver

Locating Feature Revisions in Software Systems Evolving in Space and Time SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

condition, we repeat the same process with the parent conditions

until we find a positive external feature from the solution. In the

worst case, the outcome is that we reach the node corresponding

to BASE, which is trivially a positive solution. In Figure 3 one of the

variants from T1 was BASE which is the feature assigned for the

code of the header file and of lines 6-8, as it just contain internal

features. Another variant at time T1 will be related to the block of

code in the main file in lines 2-5, which contains feature A and BASE.
Still in time T1 we have a variant with feature Y and BASE from

remaining lines of code 9-14. In time T2 we just have a new variant

regarding the change in line 12 which contains a new revision of the

feature Y (the closest external feature) and the previous revision of

the feature BASE from time T1. Regarding LibSSH, we could see in

the first 50 commits analyzed that 49 features were introduced and

over their changes a total of 129 revisions were identified, resulting

in 129 variants.

Generate ground truth variants. After performing these previous

steps, we are able to generate the ground truth variants by partially

preprocessing the code. Finally, the solution found by the Choco

solver for the configuration is used to retrieve the variant, which

from now on is ready to be used as input for locating feature revi-

sions. Figure 3 illustrates the variants mined with a set of feature

revisions from the changes over time T1 and T2.

4.5 Metrics
The precision, recall, and F1 score measure how well informa-

tion is retrieved by a system in relation to the relevant inform-

ation [34]. They are commonly used to evaluate feature location

techniques [6, 26, 28]. In order to assess how effective our technique

is to correctly locate and not missing any relevant artifacts, we ana-

lyzed if the stored traces allow to retrieve the artifacts belonging to

a specific feature revision. We applied the aforementioned metrics

by comparing artifacts of feature revisions composed by the traces

of our technique with the artifacts of the ground truth. We used

two levels of granularity, due to the feature evolution analyzed,

and the different kinds of files that existed in the subject systems

(C/C++, binary and text files): (i) file-level comparison of two com-

plete files by matching their content; (ii) line-level comparison of

two code files. The precision of the file-level comparison is the per-

centage of correctly composed files, i.e., retrieved files with entire

content matching the relevant ones. The recall measures the total

percentage of entire matching of all composed files relative to the

all relevant files. Regarding line-level comparison, precision is the

percentage of correctly retrieved lines while recall is the percentage

of matched lines retrieved relative to the total of relevant lines.

Furthermore, we also measured the runtime of our technique.

The experiments were performed on a HP EliteBook laptop, with an

Intel® Core™ i7-8650U processor (1.9GHz, 4 cores), 16GB of RAM,

SSD storage, and Windows 10 operating system.

5 RESULTS AND DISCUSSION
This section presents an empirical analysis of the feature evolu-

tion in space and time from the three subject systems. We present

and discuss the results obtained with our feature revision location

technique and answer the two RQs.

Analysis of feature evolution in space and time in subject systems.
We present in Figure 4 the evolution in space and time, i.e., the

features introduced/changed in the first 50 Git commits of three

systems. The blue line in a row represents the time between the

inclusion of a feature in the Git repository and the last revision

of that feature. The first red diamond in a blue line represents the

inclusion of a feature and the other ones along the lines are feature

revisions. First, analyzing system evolution in space, we can see

the feature evolution of the Marlin system in Figure 4(a). After

the product started with Git commit #1 with just BASE, the second
Git commit introduced 18 new features. Furthermore, additional

new features were included in the following commits: #13 (+5),

#14 (+5), #19 (+1), #22 (+4), #27 (+1), #31 (+1), and #50 (+1). For the

LibSSH system shown in Figure 4(b) the initial version started in

Git commit #1 with 16 features. Then, there were four evolution-in-

space changes (Git commits #12, #20, #34, and #38) including 33 new

features. In case of the SQLite system shown in Figure 4(c), the first

commit had no files, so just in the second commit we have feature

code introduced. Along the commits analyzed, commit #2 had six

features introduced of the total of seven existing until Git commit

#50. The remaining feature appeared in Git commit #7. For every

feature revision along the 50 Git commits, there was no evolution

in time because changes were introduced only in BASE code. Thus,

over few Git commits, we can also see that many features change

over time besides BASE. By looking to Figure 4(a) we can observe a

great density of feature revisions in 20 Git commits (between #13

and #33), adding 93 feature revisions, which represent 65% of all

revisions. The evolution in time by feature revision can have much

impact in HCSSs product configurations. For example, the commit

#16 of Marlin changed nine different features and commit #38 in

LibSSH included four new features and changed five other ones.

This evolution in time and space makes engineering tasks complex.

Suppose an engineer needs to recover an older version of feature

ADVANCE before commit #31, keeping the change of other features.

This would require great effort andwould be error prone, since other

current variants of Marlin system could be still using the newer

version of that feature. Considering these three subject systems, we

see different magnitudes of software systems’ variability in time.

Locating feature revisions with our technique. The results related
to the quality [15] of our technique for locating feature revisions

are shown in Table 6. The precision for the three subject systems

was 100% at the file and line level of granularity. Recall values are

almost all optimal (retrieving 95% up to 99% of the total relevant

artifacts). The values of F1, which consider both precision and recall,

are between 97% and 99%, what shows that our technique is reliable

to locate feature revisions by a given set of variants in different

space configurations and in many points in time.

The false negative lines in Marlin were about 3,138 from a total

of 1,460,533 relevant lines over 144 compared variants (min: 0, max:

163, mean: 21.79 per variant). From false negative lines, 774 are

comment lines. Those false negative lines were caused by incorrect

traces since Git commit #31, which were part of feature revisions

evolved up to the last Git commit analyzed. In LibSSH, 1,470 lines

weremissing over all 129 composed variants (min: 0, max: 106, mean:

13.02 per variant) of a total of 4,344,801 relevant lines. Those false

negative lines were incorrect traces of artifacts and feature revisions

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Michelon et al.

Commits Marlin

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ...

BASE
AVR ATmega2560

PID OPENLOOP
PID DEBUG
ADVANCE

AVR AT90USB1286
RAMPS V 1 0

THERMISTORHEATER
AVR ATmega644P
AVR ATmega328

AVR AT90USB1287
AVR ATmega32U4
THERMISTORBED
AVR ATmega644

F CPU
F OFLAG

WATCHPERIOD
HEATER USES THERMISTOR

BED USES THERMISTOR
DEBUG STEPS

NEWPANEL
SIMPLE LCD

BED USES AD595
ARDUINO

THERMISTORHEATER 2
HEATER 1 USES THERMISTOR

THERMISTORHEATER 1
HEATER USES THERMISTOR 1
HEATER 2 USES THERMISTOR

HEATER 2 USES AD595
THERMISTORHEATER 0

HEATER 1 MINTEMP
HEATER 0 USES THERMISTOR

HEATER 1 MAXTEMP
RESET MANUAL

PID PID
AUTOTEMP

(a) Marlin

Commits LibSSH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ...

BASE
HAVE SYS POLL H

cplusplus
HAVE OPENSSL AES H

HAVE SSH1
HAVE LIBZ

DEBUG CRYPTO
HAVE SYS TIME H

HAVE GETHOSTBYNAME
HAVE POLL

WORDS BIGENDIAN
HAVE SELECT

HAVE GETHOSTBYADDR
WITH SERVER

OPENSSL VERSION NUMBER
HAVE OPENSSL BLOWFISH H

HAVE PTY H
HAVE STDINT H

HAVE ARPA INET H
HAVE CONFIG H
HAVE CTYPE H

DEBUG
HAVE SYS TYPES H

HAVE FCNTL H
WIN32

HAVE LIBOPENNET
HAVE GETPWUID

HAVE LIBWSOCK32
MINGW32

HAVE SYS STAT H
HAVE STRING H
HAVE ERRNO H
HAVE DIRENT H

HAVE SYS SOCKET H
HAVE INTTYPES H
HAVE OPENNET H

HAVE STDIO H
HAVE NETINET IN H

HAVE STRINGS H
HAVE MEMORY H

HAVE NETDB H
HAVE PWD H

TIME WITH SYS TIME
HAVE PAM PAM APPL H

HAVE SECURITY PAM APPL H
HAVE LIBCRYPTO
HAVE LIBGCRYPT

GCRYPT
HAVE OPENSSL DES H

(b) LibSSH

Commits SQLite

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ...

BASE
TEST

NDEBUG
TEST COMPARE

YYERRORSYMBOL
WIN32
TCLSH

(c) SQLite

Figure 4: Marlin, LibSSH and SQLite evolution in space and time on the first 50 commits on Git VCS.

Locating Feature Revisions in Software Systems Evolving in Space and Time SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Table 6: Average precision, recall and F1 metrics of com-
posed artifacts per system.

Subject System Granularity Precision Recall F1

Marlin Files 1.00 0.95 0.97

Lines 1.00 0.99 0.99

LibSSH Files 1.00 0.99 0.99

Lines 1.00 0.99 0.99

SQLite Files 1.00 0.99 0.99

Lines 1.00 0.99 0.99

All Files 1.00 0.98 0.99

Lines 1.00 0.99 0.99

since Git commit #10. In SQLite, three lines were false negatives on

composed variants corresponding to the Git commit #37, resulting

in 39 false negative lines over all 55 composed variants (min: 0, max:

3, mean: 0.71 per variant) among a total of 727,387 relevant lines.

The false negatives were caused by incorrect alignments performed

by the LCS algorithm. An adapter with a more fine-grained tree

structure for the specific programming language may contribute to

a more precise alignment and higher precision and recall.

RQ1. Can the proposed technique locate feature revisions
from a set of existing variants? Our technique proved to be
effective for locating feature revisions in the used data set, with high
values for the measures of precision, recall and F1. The proposed
technique correctly located the artifacts in an automated way, which
can help developers to easily perform this task and save time.

Composing variants with new configurations of existing feature re-
visions. Table 7 shows the values of precision, recall, and F1 from

comparison of artifacts (file and line levels) of the ground truth

and our composed variants. Our technique retrieves artifacts with

precision of 100% and recall of 93%-99% at file-level granularity. At

line-level granularity, the average precision is 100% for SQLite and

99% for the other two. Recall is 99% for the three subject systems. All

values for F1 are greater than 96%, almost the same as the minimum

F1 achieved when comparing the artifacts of composed variants

with the ones from the input variants (97%).

For Marlin, within a total of 496769 relevant lines, 1782 were

false negative lines and from these, 394 are just comment lines. In

the case of LibSSH, 684 lines were false negatives, five of which

are comment lines, from a total of 1661585 relevant lines. In case

of SQLite, 39 lines were missing in the composed files from a total

of 727897 relevant lines of ground truth files. The false negative

lines were missed due to some wrong traces caused by incorrect

1 # i fde f HAVE_SSH1

2 opt ion −> s sh1a l l owed =1 ;

3 # e l se
4 opt ion −> s sh1a l l owed =0 ;

5 #endif

Listing 1: code snippet from LibSSH, file options.c.

Table 7: Average precision, recall and F1 metrics of com-
posed artifacts for random configurations per system.

Subject System Granularity Precision Recall F1

Marlin Files 1.00 0.93 0.96

Lines 0.99 0.99 0.99

LibSSH Files 1.00 0.95 0.98

Lines 0.99 0.99 0.99

SQLite Files 1.00 0.99 0.99

Lines 1.00 0.99 0.99

All Files 1.00 0.96 0.98

Lines 0.99 0.99 0.99

alignments of lines with the LCS algorithm. False positive lines were

composed in variants from Marlin (four lines added) and LibSSH

(19 lines added) systems. The false positive lines in the composed

variants are caused by feature interactions in the configurations,

which we randomly chose without considering whether a selected

feature excludes parts of code that can be in other features when

preprocessing ground truth variants. This can result in an invalid

configuration, where the preprocessed variant as ground truth is

missing artifacts. As an example, the random variant generated in

Git commit #12 of LibSSH, which contains the features HAVE_SSH1,
DEBUG_CRYPTO, HAVE_PTY_H and BASE.

Listing 1 shows that when preprocessing a variant with feature

HAVE_SSH1 defined, the ground truth variant will contain Line 2

and not Line 4. Only when this feature is not defined Line 4 will be

present in the variant. Our feature revision location technique then

mapped the artifact from Line 2 to presence conditions containing

feature HAVE_SSH1 and Line 4 to presence conditions containing

BASE and other features from the respective point in time. Thus,

our composed variant with the combination of features will contain

artifacts of both #ifdefs and #else blocks that are missing in the

ground truth variant.

RQ2. Can new variants be composed with feature revisions
located by our technique? The traces computed by our technique
proof useful for creating new variants with random configurations,
still achieving high values for the measures of precision, recall and
F1. Our feature revision location technique can therefore support
tasks such as extractive SPLE.

Performance of our feature revision location technique. The per-

formance of our technique is shown in Figure 5. It took around 50

seconds on average, and even in the worst cases not longer than

200 seconds. As expected, the runtime for locating feature revisions

increases with the number of feature revisions because the number

of artifacts and features is greater to refine the traces. As Marlin and

LibSSH subject systems have more feature revisions to be located,

they presented outliers that were probably caused by the garbage

collector unexpectedly slowing down the application. Although

SQLite has fewer feature revisions, the size of artifacts that have

been changed is such as big as in the other systems. Thus, inde-

pendently of the number of feature revisions, the size of artifacts

can slow the process to refine traces.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Michelon et al.

0 50 100 150

M
a
r
l
i
n

L
i
b
S
S
H

S
Q
L
i
t
e

Time [Seconds]

S
u
b
j
e
c
t
S
y
s
t
e
m

Figure 5: Runtime of feature revision location per variant.

6 THREATS TO VALIDITY
The threats to construct validity are related to the study setup. Firstly,
the scenarios used to validate our technique contain changes to

features, but we did not have data on the type of evolution, e.g,

performance improvement, new hardware support, bug fixing, etc.

Secondly, the methodology chosen to evaluate our technique was

based on variants in space and time created by a configuration of

features in specific changes of annotated code in the Git commits

we analyzed. This was necessary since there was no ground truth

we could use. To mitigate this threat, we generated new variants

with different configurations of feature revisions (not used as input)

randomly chosen for the points in time analyzed.

A threat to internal validity is the limitation of the underlying

tools that could have affected our results. We used our own de-

veloped tool to compose variants. However, our developed tool is

available for further comparison and was widely used in previous

works where it successfully composed variants [9, 10, 12, 21].

A threat to external validity is the generalization of the results.

Our evaluation was conducted with a subset of commits from three

Git projects. The three selected target systems are from different

domains and have different sizes with different behaviors in terms

of how often their features change along the Git commits, so we

believe that the results cover diverse enough scenarios.

7 RELATEDWORK
The idea of creating software versions started when important

dimensions of evolution such as revisions and variants were intro-

duced. Conradi et al. [5] defined revisions as a software versions

that evolve along the time dimension. In this context, our feature

revision location technique can help to get the feature variability

along the time dimension. However, the evolution of variable soft-

ware systems is still a challenge. While product line engineering

requires new tools and processes, VCSs do not scale with the num-

ber of variants and require the consolidation of cloned variants into

a product line. Moreover, evolving a product line is more complex

than evolving single variants [4]. Indeed, VCSs and the annotation-

based preprocessors are still widely used as a variability mechanism

for handling a high number of revisions and variants. To improve

on the current situation, variation control systems, a special kind

of VCSs with a focus on variant management rather than revision

management, have been developed [20, 24].

In order to support the extractive adoption of SPLs by reusing

existing variants as the basis for the core assets several feature

location techniques have been proposed [3]. However, the feature

revision concept is still untreated among feature location techniques

in the literature [3, 6, 8, 28, 31, 33]. As suggested by Hinterreiter et

al. [16], maintaining revisions of individual features may help to

understand the evolution history of a variant and capture ongoing

changes. Thus, with our automated technique, developers can re-

engineer a system for feature-oriented development and manage

evolution in the time dimension by means of feature revisions.

8 CONCLUSIONS AND FUTUREWORK
To the best of our knowledge, existing feature location techniques

are limited to one certain point in time. Due to this limitation, this

paper highlights the importance of feature location in both space

and time and introduce a new automated feature revision location

technique, allowing practitioners reason about variants in different

points of time. Our results showed that our feature revision location

technique can locate the features’ artifacts with a precision of 100%

at file-level and line-level granularity and a recall of, at least, 95% at

file-level and 99% at line-level granularity. Regarding the perform-

ance of our feature revision location technique, we reported that it

took on average 50 seconds to trace artifacts to feature revisions for

each input variant. Even if manual completion is necessary, it will

not require extensive code additions or deletions by a developer.

Thus, our automated technique can aid developers re-engineering

software systems into SPLs at the level of feature revisions, thereby

saving time and effort. Hence, facilitating the management of sys-

tem variability in space and time by the possibility of composing

variants with feature revisions.

We hope with our results to inspire researchers and tool builders

to work with feature revisions, treating feature evolution in space

and time and encourage them to improve our technique, which can

be compared with common metrics and available ground truth used

in our work. As future work, we want to conduct more experiments

with industrial systems and from different domains and consider

other programming languages such as Java. Furthermore, we will

improve the scalability of our technique implementation for dealing

with the growth of feature revisions. Then, we will seek on how to

provide an independent mechanism for enabling the management

of variants with any combination of feature revisions.

ACKNOWLEDGMENTS
This research was funded by the LIT Secure and Correct Systems

Lab; the Austrian Science Fund (FWF), grant no. P31989; Pro2Future,

a COMET K1-Centre of the Austrian Research Promotion Agency

(FFG), grant no. 854184; CNPq, grant no. 408356/2018-9 and FAPPR,

grant no. 51435. The support by the Austrian Federal Ministry for

Digital and Economic Affairs and the National Foundation for Re-

search, Technology and Development is gratefully acknowledged.

Locating Feature Revisions in Software Systems Evolving in Space and Time SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

REFERENCES
[1] Florian Angerer, Andreas Grimmer, Herbert Prähofer, and Paul Grünbacher. 2019.

Change Impact Analysis for Maintenance and Evolution of Variable Software

Systems. Automated Software Engineering 26 (June 2019), 417–461. Issue 2.

https://doi.org/10.1007/s10515-019-00253-7

[2] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.

Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into

software product lines: a systematic mapping. Empirical Software Engineering 22,

6 (01 Dec 2017), 2972–3016. https://doi.org/10.1007/s10664-017-9499-z

[3] Wesley Klewerton Guez Assunção and Silvia Regina Vergilio. 2014. Feature Loca-

tion for Software Product Line Migration: A Mapping Study. In 18th International
Software Product Line Conference: Companion Volume for Workshops, Demonstra-
tions and Tools - Volume 2 (Florence, Italy) (SPLC 2014). ACM, New York, USA,

52–59. https://doi.org/10.1145/2647908.2655967

[4] Thorsten Berger, Marsha Chechik, Timo Kehrer, and Manuel Wimmer. 2019.

Software Evolution in Time and Space: Unifying Version and Variability Man-

agement (Dagstuhl Seminar 19191). Dagstuhl Reports 9, 5 (2019), 1–30. https:

//doi.org/10.4230/DagRep.9.5.1

[5] Reidar Conradi and Bernhard Westfechtel. 1998. Version Models for Software

Configuration Management. Comput. Surveys 30, 2 (June 1998), 232–282. https:

//doi.org/10.1145/280277.280280

[6] Daniel Cruz, Eduardo Figueiredo, and Jabier Martinez. 2019. A Literature Review

and Comparison of Three Feature Location Techniques Using ArgoUML-SPL. In

13th International Workshop on Variability Modelling of Software-Intensive Systems
(Leuven, Belgium) (VAMOS 2019). ACM, New York, USA, Article 16, 10 pages.

https://doi.org/10.1145/3302333.3302343

[7] Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, and Adam Gudyś. 2014.

Kalign-LCS — A More Accurate and Faster Variant of Kalign2 Algorithm

for the Multiple Sequence Alignment Problem. In Man-Machine Interactions
3, Dr. Aleksandra Gruca, Tadeusz Czachórski, and Stanisław Kozielski (Eds.).

Springer International Publishing, Cham, 495–502.

[8] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.

Feature location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53–95. https://doi.org/10.1002/smr.567

[9] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. 2014. Enhancing

Clone-and-Own with Systematic Reuse for Developing Software Variants. In 30th
IEEE International Conference on Software Maintenance and Evolution (Victoria,

BC, Canada) (ICSME 2014). IEEE, New York, USA, 391–400. https://doi.org/10.1

109/ICSME.2014.61

[10] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. 2015. The ECCO

Tool: Extraction and Composition for Clone-and-Own. In 37th IEEE International
Conference on Software Engineering (Florence, Italy) (ICSE 2015), Vol. 2. IEEE, New
York, USA, 665–668. https://doi.org/10.1109/ICSE.2015.218

[11] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed.

2016. A Source Level Empirical Study of Features and Their Interactions in Vari-

able Software. In 16th International Working Conference on Source Code Analysis
and Manipulation (Raleigh, USA) (SCAM 2016). IEEE, New York, USA, 197–206.

[12] Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed. 2019.

Automating test reuse for highly configurable software. In 23rd International
Systems and Software Product Line Conference (Paris, France) (SPLC 2019). ACM,

Paris, France, 1–11. https://doi.org/10.1145/3336294.3336305

[13] Angelo Gargantini, Justyna Petke, Marco Radavelli, and Paolo Vavassori. 2016.

Validation of Constraints Among Configuration Parameters Using Search-Based

Combinatorial Interaction Testing. In Search Based Software Engineering, Federica
Sarro and Kalyanmoy Deb (Eds.). Springer International Publishing, New York,

49–63.

[14] Huong Ha and Hongyu Zhang. 2019. Performance-Influence Model for Highly

Configurable Software with Fourier Learning and Lasso Regression. In 35th
International Conference on Software Maintenance and Evolution (Cleveland, OH,

USA) (ICSME 2019). IEEE, New York, USA, 470–480. https://doi.org/10.1109/IC

SME.2019.00080

[15] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. 2006. Advancing candidate link

generation for requirements tracing: the study of methods. IEEE Transactions on
Software Engineering 32, 1 (2006), 4–19.

[16] Daniel Hinterreiter, Michael Nieke, Lukas Linsbauer, Christoph Seidl, Herbert

Prähofer, and Paul Grünbacher. 2019. Harmonized Temporal Feature Model-

ing to Uniformly Perform, Track, Analyze, and Replay Software Product Line

Evolution. In 18th International Conference on Generative Programming: Concepts
& Experiences (Athens, Greece) (GPCE 2019). ACM, New York, USA, 115–128.

https://doi.org/10.1145/3357765.3359515

[17] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and

Thorsten Berger. 2019. Where is my feature and what is it about? A case study

on recovering feature facets. Journal of Systems and Software 152 (2019), 239–253.
https://doi.org/10.1016/j.jss.2019.01.057

[18] Jacob Krüger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and

Thorsten Berger. 2018. Towards a Better Understanding of Software Features and

Their Characteristics: A Case Study of Marlin. In 12th International Workshop

on Variability Modelling of Software-Intensive Systems (Madrid, Spain) (VAMOS
2018). ACM, New York, USA, 105–112. https://doi.org/10.1145/3168365.3168371

[19] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael

Schulze. 2010. An Analysis of the Variability in Forty Preprocessor-based Soft-

ware Product Lines. In 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1 (Cape Town, South Africa) (ICSE 2010). ACM, New York,

USA, 105–114. https://doi.org/10.1145/1806799.1806819

[20] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A classification of

variation control systems. In Proceedings of the 16th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, GPCE 2017,
Vancouver, BC, Canada, October 23-24, 2017, Matthew Flatt and Sebastian Erdweg

(Eds.). ACM, New York, USA, 49–62. https://doi.org/10.1145/3136040.3136054

[21] L. Linsbauer, S. Fischer, R. E. Lopez-Herrejon, and A. Egyed. 2015. Using Traceabil-

ity for Incremental Construction and Evolution of Software Product Portfolios. In

8th International Symposium on Software and Systems Traceability (Florence, Italy)

(SST 2015). IEEE, New York, USA, 57–60. https://doi.org/10.1109/SST.2015.16

[22] Lukas Linsbauer, E. Roberto Lopez-Herrejon, and Alexander Egyed. 2013. Re-

covering Traceability between Features and Code in Product Variants. In 17th
International Software Product Line Conference (Tokyo, Japan) (SPLC 2013). ACM,

New York, USA, 131–140. https://doi.org/10.1145/2491627.2491630

[23] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2017.

Variability extraction and modeling for product variants. Software and Systems
Modeling 16, 4 (2017), 1179–1199. https://doi.org/10.1007/s10270-015-0512-y

[24] Lukas Linsbauer, Felix Schwägerl, Thorsten Berger, and Paul Grünbacher. 2021.

Concepts of variation control systems. Journal of Systems and Software 171 (2021),
110796. https://doi.org/10.1016/j.jss.2020.110796

[25] Jia Liu, Don Batory, and Christian Lengauer. 2006. Feature Oriented Refactoring

of Legacy Applications. In 28th International Conference on Software Engineering
(Shanghai, China) (ICSE 2006). ACM, New York, USA, 112–121. https://doi.org/

10.1145/1134285.1134303

[26] Jabier Martinez, Tewfik Ziadi, Mike Papadakis, Tegawendé F. Bissyandé, Jacques

Klein, and Yves le Traon. 2018. Feature location benchmark for extractive software

product line adoption research using realistic and synthetic Eclipse variants.

Information and Software Technology 104 (2018), 46 – 59. https://doi.org/10.101

6/j.infsof.2018.07.005

[27] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kästner, B. Ferreira, L. Carvalho,

and B. Fonseca. 2018. Discipline Matters: Refactoring of Preprocessor Directives

in the #ifdef Hell. IEEE Transactions on Software Engineering 44, 5 (May 2018),

453–469. https://doi.org/10.1109/TSE.2017.2688333

[28] Gabriela Karoline Michelon, Lukas Linsbauer, Wesley K. G. Assunção, and Al-

exander Egyed. 2019. Comparison-based feature location in ArgoUML variants.

In 23rd International Systems and Software Product Line Conference - Volume
A (Paris, France) (SPLC 2019). ACM, New York, USA, 17:1–17:5. https:

//doi.org/10.1145/3336294.3342360

[29] Gabriela Karoline Michelon, David Obermann, Wesley K. G. Assunção, Lu-

kas Linsbauer, Paul Grünbacher, and Alexander Egyed. 2020. Mining Fea-

ture Revisions in Highly-Configurable Software Systems. In Proceedings of the
24th International Systems and Software Product Line Conference, SPLC 2020,
Volume B, Montréal, Canada, October 19-23, 2020. ACM, New York, USA, 1–5.

https://doi.org/10.1145/3382026.3425776

[30] Mukelabai Mukelabai, Damir Nešiundefined, Salome Maro, Thorsten Berger,

and Jan-Philipp Steghöfer. 2018. Tackling Combinatorial Explosion: A Study

of Industrial Needs and Practices for Analyzing Highly Configurable Systems.

In 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France) (ASE 2018). ACM, New York, USA, 155–166. https://doi.or

g/10.1145/3238147.3238201

[31] Richard Müller and Ulrich Eisenecker. 2019. A Graph-Based Feature Location

Approach Using Set Theory. In 23rd International Systems and Software Product
Line Conference - Volume A (Paris, France) (SPLC 2019). ACM, New York, , USA,

88–92. https://doi.org/10.1145/3336294.3342358

[32] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag, Berlin,
Heidelberg.

[33] Julia Rubin and Marsha Chechik. 2013. A Survey of Feature Location Techniques.

InDomain Engineering, Product Lines, Languages, and Conceptual Models. Springer
Berlin Heidelberg, Heidelberg, DE, 29–58. https://doi.org/10.1007/978-3-642-

36654-3_2

[34] Kai Ming Ting. 2010. Precision and Recall. Springer US, Boston, MA. 781–781

pages. https://doi.org/10.1007/978-0-387-30164-8_652

[35] Tassio Vale and Eduardo Santana Almeida. 2019. Experimenting with Information

Retrieval Methods in the Recovery of Feature-Code SPL Traces. Empirical Soft-
ware Engineering 24, 3 (June 2019), 1328–1368. https://doi.org/10.1007/s10664-

018-9652-3

[36] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk

Beyer, and Thorsten Berger. 2015. Presence-condition Simplification in Highly

Configurable Systems. In 37th International Conference on Software Engineering -
Volume 1 (Florence, Italy) (ICSE 2015). IEEE, New York, USA, 178–188.

https://doi.org/10.1007/s10515-019-00253-7
https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1145/2647908.2655967
https://doi.org/10.4230/DagRep.9.5.1
https://doi.org/10.4230/DagRep.9.5.1
https://doi.org/10.1145/280277.280280
https://doi.org/10.1145/280277.280280
https://doi.org/10.1145/3302333.3302343
https://doi.org/10.1002/smr.567
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1145/3336294.3336305
https://doi.org/10.1109/ICSME.2019.00080
https://doi.org/10.1109/ICSME.2019.00080
https://doi.org/10.1145/3357765.3359515
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1145/3168365.3168371
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1109/SST.2015.16
https://doi.org/10.1145/2491627.2491630
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1145/1134285.1134303
https://doi.org/10.1145/1134285.1134303
https://doi.org/10.1016/j.infsof.2018.07.005
https://doi.org/10.1016/j.infsof.2018.07.005
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1145/3336294.3342360
https://doi.org/10.1145/3336294.3342360
https://doi.org/10.1145/3382026.3425776
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1145/3336294.3342358
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1007/978-0-387-30164-8_652
https://doi.org/10.1007/s10664-018-9652-3
https://doi.org/10.1007/s10664-018-9652-3

	Abstract
	1 Introduction
	2 Motivation
	3 Feature Revision Location
	3.1 Overview and Data Structures
	3.2 Trace Computation
	3.3 Implementation and Optimizations

	4 Evaluation
	4.1 Research Questions
	4.2 Method
	4.3 Data Set
	4.4 Mining Ground Truth Variants
	4.5 Metrics

	5 Results and Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

