
Mining Feature Revisions in
Highly-Configurable Software Systems

Gabriela Karoline Michelon1,2, David Obermann1, Wesley Klewerton Guez Assunção3,
Lukas Linsbauer4, Paul Grünbacher1, Alexander Egyed1

1Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria
2LIT Secure and Correct Systems Lab, Johannes Kepler University Linz, Austria

3COTSI, Federal University of Technology - Paraná, PPGComp, Western Paraná State University, Brazil
4Institute of Software Engineering and Automotive Informatics, Technische Universität Braunschweig, Germany

ABSTRACT
Highly-Configurable Software Systems (HCSSs) support the sys-
tematic evolution of systems in space, i.e., the inclusion of new
features, which then allow users to configure software products ac-
cording to their needs. However, HCSSs also change over time, e.g.,
when adapting existing features to new hardware or platforms. In
practice, HCSSs are thus developed using both version control sys-
tems (VCSs) and preprocessor directives (#ifdefs). However, the
use of a preprocessor as variability mechanism has been criticized
regarding the separation of concerns and code obfuscation, which
complicates the analysis of HCSS evolution in VCSs. For instance,
a single commit may contain changes of totally unrelated features,
which may be scattered over many variation points (#ifdefs), thus
making the evolution history hard to understand. This complexity
often leads to error-prone changes and high costs for maintenance
and evolution. In this paper, we propose an automated approach
to mine HCSS features taking into account evolution in space and
time. Our approach uses constraint satisfaction problem solving to
mine newly introduced, removed and changed features. It finds a
configuration containing the feature revisions which are needed
to activate a specific program location. Furthermore, it increments
the revision number of each changed feature. Thus, our approach
enables to analyze when and which features often change over
time, as well as their interactions, for every single commit of a
HCSS. Our approach can contribute to future research on under-
standing the characteristics of HCSS and supporting developers
during maintenance and evolution tasks.

CCS CONCEPTS
• Software and its engineering → Preprocessors; Software
product lines; Traceability; Reusability.

KEYWORDS
system evolution, software product lines, preprocessors, feature
evolution, version control systems, repository mining
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7570-2/20/10. . . $15.00
https://doi.org/10.1145/3382026.3425776

ACM Reference Format:
Gabriela Karoline Michelon1,2, David Obermann1, Wesley Klewerton Guez
Assunção3, Lukas Linsbauer4, Paul Grünbacher1, Alexander Egyed1. 2020.
Mining Feature Revisions in Highly-Configurable Software Systems. In 24th
ACM International Systems and Software Product Line Conference Companion
(SPLC ’20 Companion), October 19–23, 2020, MONTREAL, QC, Canada. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3382026.3425776

1 INTRODUCTION
A software system usually must be delivered with different config-
urations of features, with each feature representing a functionality
of the system accessible to developers and users. To remain com-
petitive, companies have to satisfy different customer needs of
the market segment they serve. Software Product Line (SPL) engi-
neering is a systematic approach to deal with the development of
customized system products. An SPL is a set of software-intensive
systems that share a common set of artifacts developed in a pre-
scribed way to facilitate their systematic reuse [7]. The customized
software products, a.k.a. variants, result from the derivation of SPL
artifacts, i.e., the selection of a different set of features that are of
interest to a customer. To allow customization, the features of an
SPL is implemented using variability mechanisms [1].

A widely used variability mechanism in SPLs is based on an-
notations [26]. Annotations rely on preprocessor directives such
as #ifdef and #endif which enclose blocks of variable code and
enable to tailor system variants to different hardware platforms, op-
erating systems, and application scenarios [23]. Annotation-based
SPLs are often implemented as Highly-Configurable Software Sys-
tems (HCSSs) [16]. HCSSs use techniques such as feature flags,
feature toggles, or feature switches, to turn on configuration option-
s/features needed to be included in a product [8, 18, 27]. However,
features also need to evolve over time. For instance, when a specific
feature is adapted to a new hardware platform, then a new version
of a variant is created. This evolution in time [30] is aided by some
tools such as version control systems (VCSs) [28].

However, despite the benefits of managing HCSSs in VCSs,
they are hardly integrated to support both evolution in space and
time [21, 22]. For example, when evolving HCSSs in VCSs, develop-
ers often commit unrelated or loosely related implementations of
features [13]. Then, evolving a particular feature requires to find
the implementation artifacts over many #ifdefs, compromising
code comprehension and complicating maintenance and evolution
tasks [9].

https://doi.org/10.1145/3382026.3425776
https://doi.org/10.1145/3382026.3425776

SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada Michelon et al.

In this paper, we present an automated approach1 for mining
HCSSs managed in VCSs to obtain information of the evolution
of features in both space and time. For every repository commit,
we mine the features that were introduced, changed, and removed.
Thus, our approach enables to automatically retrieve the features
that evolved in each point in time for every change in the code.
The approach takes into account all subsequent lines of code and
solves a Constraint Satisfaction Problem (CSP) [5, 29] to assign
feature revisions to a specific changed block of code. In addition,
our approach finds a configuration for every changed block of
code in a Git commit that activates that specific program location,
thereby easing the analysis of feature interactions [2].

2 MOTIVATING EXAMPLES
The complexity of HCSSs implementation often makes mainte-
nance, evolution, and testing activities time consuming and error-
prone tasks. This happens mainly because source code cluttered
with preprocessor directives is difficult to understand [14]. Complex
systems have many features which are annotated across many files,
and which often depend on or interact with other features. This
makes it hard, for instance, to determine without an automated
mechanism which specific feature has a bug or causes other faults.

Imagine an HCSS managed in a VCS, which has been evolved
for a while. If a bug is reported by the users, the developers need to
find where and when the bug was introduced and which features
it affects. Developers fixing the bug may need to look through
the entire VCS version history to find the commit introducing the
defective code. However, manually retrieving the changes related
to the desired feature is a complex task, especially when multiple
features are changed or added in a single commit [4, 17, 31].

Concrete examples can be found in the commits of the Lib-
SSH2 system. Analyzing the version history we can see that many
changes were made in a single commit (77603db), containing
changes of refactoring, cleanup debugging messages, inclusion
and enhancing of features, and bug fixing. In this same commit, 15
files were changed, representing a total of 415 additions and 338
deletions. To associate the different changes to specific features,
firstly, we have to analyze which features really changed. Perform-
ing a manual analysis over all the files requires also to analyze each
#ifdef block as well as #defines and #includes directives in the
code to correctly assign a change to a feature. Doing this manually
can become infeasible and a cumbersome when features have high
degrees of scattering, tangling, and nesting [26].

It has been shown that the commit messages often do not reflect
the actual changes performed [4]. For instance, the commit 6f47401
of the LibSSH system contains the code implementing the feature
HAVE_SSH1 but also changed the feature name in the #ifdef an-
notation to WITH_SSH1. This kind of changes can easily lead to a
misunderstanding of features. For example, if a customer using a
system version delivered before this name change reports a bug,
and the developers try to find the bug by looking for the feature
HAVE_SSH1 in a version of the systemwith the aforementioned com-
mit, they will be misled, since, at that time, the problem is actually
located in the feature WITH_SSH1.
1https://github.com/GabrielaMichelon/git-ecco
2https://gitlab.com/libssh/libssh-mirror/

Compute	
feature
revisions

Clone	Git
repository

1 			Get	commits	
of	the	trunk
branch	of	a

specific	release

2

4

NoYes

Identify
features

Commits	of	a	specific
release	in	a	tree	structure

Set	of	featuresSet	of	feature	
revisions

Are	the	
features
known?

3

Figure 1: Approach overview.

The examples show that recovering feature implementations is
a complex and costly task in HCSSs evolution, which suggests an
automated mechanism to retrieve the added and removed features
as well as their changes, i.e., revisions.

3 APPROACH
We present an approach for mining feature revisions of HCSSs,
which are managed in VCSs. We describe its main steps, input, and
output, as well as the internal representation of artifacts. From
now on, we refer to feature revision as the change in a feature at
a specific point in time, i.e., in a Git commit. Figure 1 presents an
overview of our automated approach. Firstly, the Git repository of
the HCSS is cloned (step 1) and all commits of the main branch of
a specific release, i.e., a Git tag, are retrieved and represented in
a tree-like structure (step 2). Since the goal of our approach is to
mine feature revisions, we must know the HCSS features. If they
are known in advance, they are provided as input for step 4, if
not, step 3 is responsible for automatically identifying the features
implemented in the HCSS by exploring the tree structure containing
the files and source code of each commit of the release. In step 4,
our approach performs the process of assigning feature revisions
to the changes.

Below, we describe in detail how the tree-like representation of
the artifacts is created and we explain the steps of identifying fea-
tures (step 3) and computing feature revisions (step 4). To exemplify
these activities, we use the running example presented in Listing 1.

Artifact representation. Existing tools such as TypeChef [20],
SuperC [10], and KernelHaven [19] allow transforming systems that
are implemented in C and annotated with preprocessor directives
into an Abstract Syntax Tree (AST). In addition, TypeChef and
SuperC represent the variability in the AST in the form of choice
nodes. However, for our purpose, we only need nodes at the level
of preprocessor directives and it would be computationally too
expensive and time-consuming to analyze all commits of a system
at the AST level. Thus, we decided to create our own tree structure
suitable for our approach, which only needs to distinguish the
preprocessor directives to easily build constraints for CSP problems
and to identify the features of our subject systems, which do not
have a variability model and tristate type such as the Linux Kernel.

Therefore, in our approach, the artifacts, i.e., the source code
and any other files, are represented based on a tree-like structure.
For this, we assume that conditional blocks wrap code that may
belong to one feature, multiple features, or no feature. An example
of such code blocks is presented in Listing 1. The Lines 1-4 are part

https://gitlab.com/libssh/libssh-mirror/-/commit/77603dbc5a5c55ecfa8d583c133db844673fb690
https://gitlab.com/libssh/libssh-mirror/-/commit/6f47401173340665e25872bef0b87cedd9812602
https://github.com/GabrielaMichelon/git-ecco
https://gitlab.com/libssh/libssh-mirror/

Mining Feature Revisions in Highly-Configurable Software Systems SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada

1 #ifdef WITH_SERVER
2 #define _LIBSSH_H
3 #define MD5_DIGEST_LEN 16
4 #endif
5
6 #ifdef __cplusplus
7 #if _LIBSSH_H && MD5_DIGEST_LEN > 5
8 <code >
9 #endif
10 #endif

Listing 1: Conditional blocks of feature implementations.

of a conditional block of the feature WITH_SERVER, while the block
from Lines 6-10 is part of the feature __cplusplus. We can also
see an internal block within the conditional block of code of the
feature __cplusplus in Lines 7-9. Using this information we can
build a tree structure to represent the artifacts of the repository
at a certain point in time, i.e., for a specific Git commit. The tree
structure contains the content of each source code, text or binary
file. For the source code files, e.g., .c/.cpp, we add child nodes. The
child nodes can be conditional nodes, i.e., #ifdef, #if, #ifndef,
#elif, #else; definition nodes, i.e., #define and #undef directives;
or import nodes, containing #include directives. The lines of code
inside a source file that are not wrapped by a conditional block
will be part of an #if conditional node belonging to the feature
BASE. The #include nodes contain child nodes corresponding to
the source code of each included file. For the other files, we do
not add define and include nodes, we just consider all their lines
belonging to a conditional node containing the feature BASE, i.e., a
code that belongs to the base of the project and not to a particular
feature of the system.

As we can see in Figure 1, the tree is built from the output
of step 2. From this step, we get a partially preprocessed ver-
sion of the code, which consists of resolving macros in the state-
ments of the conditional blocks of code [18]. For example, if we
have: #define FEAT_A(X,Y) X+Y, then, the partial preprocess-
ing of: #if FEAT_A(FEAT_B,FEAT_C) > 10, would result in: #if
(FEAT_B+FEAT_C) > 10. This process is necessary to correctly get
all the features from the conditions. All #define and #include
directives remain in the partially preprocessed files. Finally, we
transform these files into the tree structure.

Identify Features. After cloning the Git repository (step 1) and
obtaining the commits of a specific release into the tree structure
(step 2), our approach proceeds with step 3, which extracts all
macros from the conditional and define nodes. Identifying possible
features is based on classifying the macros inside conditional nodes
within three classes: external, internal, and transient, where only
the external will be the features of the system. External macros
can only be defined externally and represent the features that are
selected or not when creating a variant of the SPL. Therefore, the
conditional blocks of code with external macros are the variation
points. For example, in Listing 1, WITH_SERVER and __cplusplus
are the external macros. Internal macros are defined at some point
in the code via a #define directive. In Listing 1 _LIBSSH_H and
MD5_DIGEST_LEN are internal macros, defined in Lines 2 and 3,
respectively. Transient macros are used in some Git commits as
external and internal at the same release, i.e., in some Git commits
a specific macro is used in a condition and never defined in the

system code, but in some other Git commits, it is defined in the
source files. We thus compute as features the macros classified as
external in all commits of a specific release. The set of features
obtained as output is not limited to be exactly those features of the
external macros. Therefore, the output can be manually adjusted to
the array of features in the program, if necessary, before being used
as input for the process of computing feature revisions (step 4).

Compute Feature Revisions. Now, we get each changed code
block for each commit of the HCSS release. The approach compares
the files of the commit 𝑛 with the commit 𝑛 − 1 to get the differ-
ences from one point in time to another. For this, it gets the tree
structure created for each commit of the release and obtains the
changes mapped to the nodes of the tree structure, which returns
the changed nodes. The obtained set of changed nodes allows creat-
ing the constraints to represent our problem. The basic idea here is
to create a set of constraints that will be handed to a solver. Solving
these constraints delivers the assignment for the macros, which we
will need for computing the feature revisions.

To understand how the set of constraints is created we can look
at Listing 1 and assume that the code in Line 8 changed. We first
get the local condition, i.e., the condition that is closest to the
changed code, which will be in this case the condition in Line 7
(_LIBSSH_H && MD5_DIGEST_LEN > 5). Next, we get the second
part of the constraint, which is the condition of the closest block
with a conjunction of all conditions of its parents’ blocks. We obtain
the conditions of the parents’ blocks by walking up the tree, starting
from the changed node. In the example, this would be __cplusplus
&& (_LIBSSH_H && MD5_DIGEST_LEN > 5). The constraint needs
a mapping of all internal macros to external macros that influence
the activation of the code block of the changed node because the
external macros are our set of features. In Listing 1 we see that
WITH_SERVER defines _LIBSSH_H and MD5_DIGEST_LEN=16. This
means we can map the internal macros of the changed node to
the code block of the feature WITH_SERVER. This mapping will be
a queue of implications for the internal macros _LIBSSH_H and
MD5_DIGEST_LEN. The queue of implications is built by traversing
the tree of the corresponding source file. When a #define is found,
the approach takes the condition of the conditional code block con-
taining the #define directive. Note that when a #define is not
wrapped by an #ifdef, the tree structure will contain the BASE con-
ditional block as a parent node. With this, we form an implication,
similar to Nadi et al. [24], in the form of (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → (𝑀𝑎𝑐𝑟𝑜 =

𝑉𝑎𝑙𝑢𝑒))∧(¬𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → ¬𝑀𝑎𝑐𝑟𝑜) for the base case, or of the form
(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → (𝑀𝑎𝑐𝑟𝑜 = 𝑉𝑎𝑙𝑢𝑒)) ∧ (¬𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝐸𝑙𝑠𝑒𝑃𝑎𝑟𝑡) for
the non-base cases. The first part of the implication is the base case,
which means that if there are no further implications the macros
have 𝑣𝑎𝑙𝑢𝑒 = 𝑓 𝑎𝑙𝑠𝑒 . In case there are further implications, they are
concatenated in the same way and placed as the 𝐸𝑙𝑠𝑒𝑃𝑎𝑟𝑡 . This rep-
resentation makes it possible to overwrite assignments of macros
via #defines. By using this approach we can simulate the behavior
of the preprocessor.

Having all the constraints created, the approach has to provide
an adequate assignment. For this, a solver is needed. TypeChef uses
an SAT solver to analyze ifdef variability in C code. However, the
statements in the conditional code blocks may not only contain
basic logic operations and Boolean values but can also involve

SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada Michelon et al.

basic arithmetic operations and comparisons, as well as numeric
values in the range of integer or double. Thus our approach uses the
ChocoSolver [3]. We provide the first possible solution for a given
constraint in step 4, since getting the optimal solution increases
significantly the computation effort. After adding all these parts
to the solver, we retrieve a solution in case a solution exists for
the given constraints. If the solver finds no solution it means that
the part of code we wanted to activate is dead, i.e., there is no
configuration that can activate it.

To compute the revisions, we chose a particular heuristic that
considers as changed features only the features closest to the
changed node that are assigned the value 1 by the solution given by
the solver. Initially, we do not consider for a new feature revision
all parent nodes that wrap the changed node. When more than one
parent node exists, only the closest is considered as changed. If the
macros of the changed node are external, the approach considers
the features of the condition of the changed node as new revisions.
When this is not the case, as in our example shown in Listing 1 in
Line 7, the approach looks at the condition of the closest parent
node. We repeat the same process with parent conditions until
we find a solution. When no positive features are wrapping the
changed code, i.e., solution ≠ 1, then we assign the change as a new
revision of the feature BASE. In our example in Listing 1, a change in
Line 8 will lead to a solution from the solver:𝑊𝐼𝑇𝐻_𝑆𝐸𝑅𝑉𝐸𝑅 = 1
and __𝑐𝑝𝑙𝑢𝑠𝑝𝑙𝑢𝑠 = 1. Thus, the approach assigns this change to the
closest parent node, i.e., the feature __cplusplus, thus leading to
a new revision caused by the change in Line 8.

Output results. The output of our mining approach will be a
configuration to activate the changed code (Line 8 in Listing 1):
BASE.1, WITH_SERVER.1, __cplusplus.2. In case of a conditional
expression of a feature interaction, for example, WITH_SERVER &&
__cplusplus, the configuration will contain an incremented re-
vision of both WITH_SERVER and __cplusplus. A dataset of the
LibSSH system is available at https://github.com/jku-isse/LibSSH-
dataset. It contains for every release: the classification of the macros;
the considered set of features; the Git commits where a feature was
present; the number of Git commits that a feature changed, i.e.,
had new revisions; the number of deleted features per Git commit;
the configuration for every changed block of code in a Git commit;
the number of Git commits that a feature was removed; and the
number of new and changed features per Git commit.

4 RELATEDWORK
Recent work from Gazzillo et al. [11] poses a challenge to propose
an approach to apply an automatic analysis to find concrete config-
urations that include a specific program location. Our approach is
able to find configurations of a specific block of code and may help
the software testing and maintenance. Because knowing which
feature(s) and revision(s) are needed to be selected or not to execute
a specific block of code, can easier to identify bugs or defects.

An approach to automatically identify and summarize features
in forks of a project is proposed by Zhou et al. [31]. It is based on
source code analysis and on a cluster of changes by information-
retrieval to identify keywords of features developed in forks. Their
approach is not focused on mining feature revisions on tangled
changes within preprocessor directives from HCSSs. Our approach

is focused to mine feature revisions of changes in single commits,
and thus, can also be applied to identify which changes in forks
correspond to which feature revisions.

Passos et al [25] studied the scattering of features in some re-
leases of the Linux kernel. Also, Chaikalis et al. [6] analyzed the
feature scattering but based on the number of classes and methods
involved in the implementation of a certain feature over versions
(not Git commits) of Java projects. Godfrey and Qiang [12] studied
the Linux evolution in terms of lines of code. Israeli and Feitel-
son [15] studied the Linux evolution in relation to the complexity
of functions. The FEVER approach [8] is also applied to extract
information of the Linux kernel evolution, extracting information
about which features changed in the variability models (KConfig
files), assets (preprocessor based C code), and mappings (Makefiles).
They considered as features the ones defined in the KConfig file, and
the source files are the ones mapped to the features in the Makefiles.
However, some files in the Linux kernel cannot be mapped directly
to features, such as #include files.

Our approach differs from the existing ones as we get features
from the external macros. We then analyze every constraint from
all subsequent lines of the source code up to the #ifdefs or line
of code that changed to compute a possible solution of which fea-
ture changed in a specific Git commit. Furthermore, we provide an
automated mechanism for our approach, which can retrieve the
feature revisions over all commits of HCSSs that do not rely on
KConfig and Makefiles. Our approach captures the features added
or removed based on the ifdefs containing or not containing the
external macros (our default set of features) instead of evaluating
the variability model as done by FEVER. This does not limit our ap-
proach to systems containing a variability model. Furthermore, our
approach mines automatically which features have been changed,
i.e., the feature revisions over all commits of all releases of a system.

5 CONCLUSIONS AND FUTUREWORK
This paper presented an approach and an automated mechanism to
mine feature revisions over all commits of HCSSs developed in VCSs.
Our goal is to provide information on how the variable systems
continuously evolve in space and time, i.e., about the features that
have been introduced and changed, aiming to ease the maintenance
and evolution tasks and to benefit both the research and the practice
of HCSSs. Specifically, we believe that our approach and automated
mechanism can help developers and the research community to
further explore at what level features have been changed, to what
degree their changes have been affecting the implementation of
other features, and hence, the system behavior.

ACKNOWLEDGMENTS
This research was funded by the LIT Secure and Correct Systems
Lab; the Austrian Science Fund (FWF), grant no. P31989; Pro2Future,
a COMET K1-Centre of the Austrian Research Promotion Agency
(FFG), grant no. 854184; CNPq, grant no. 408356/2018-9 and FAPPR,
grant no. 51435. The support by the Austrian Federal Ministry for
Digital and Economic Affairs and the National Foundation for Re-
search, Technology and Development is gratefully acknowledged.

https://github.com/jku-isse/LibSSH-dataset.git
https://github.com/jku-isse/LibSSH-dataset.git

Mining Feature Revisions in Highly-Configurable Software Systems SPLC ’20 Companion, October 19–23, 2020, MONTREAL, QC, Canada

REFERENCES
[1] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. 2013. Feature-

Oriented Software Product Lines: Concepts and Implementation. Springer Publish-
ing Company, Incorporated, New York, NY, USA.

[2] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and Brady
Garvin. 2013. Exploring Feature Interactions in the Wild: The New Feature-
Interaction Challenge. In Proceedings of the 5th International Workshop on Feature-
Oriented Software Development (Indianapolis, Indiana, USA) (FOSD ’13). Associ-
ation for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.
1145/2528265.2528267

[3] IMT Atlantique. 2020. Choco-Solver. IMT Atlantique. Retrieved September 16,
2020 from https://choco-solver.org/

[4] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. 2015. Helping
Developers Help Themselves: Automatic Decomposition of Code Review Change-
sets. In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, San Francisco, CA, USA, 134–144.
https://doi.org/10.1109/ICSE.2015.35

[5] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés.
2006. Using Java CSP Solvers in the Automated Analyses of Feature Models.
Springer Berlin Heidelberg, Berlin, Heidelberg, 399–408. https://doi.org/10.
1007/11877028_16

[6] Theodore Chaikalis, Alexander Chatzigeorgiou, and Georgina Examiliotou. 2013.
Investigating the effect of evolution and refactorings on feature scattering. Soft-
ware Quality Journal 23, 1 (May 2013), 79–105. https://doi.org/10.1007/s11219-
013-9204-4

[7] Paul C. Clements and Linda Northrop. 2001. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, MA, USA.

[8] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2018. FEVER: An
approach to analyze feature-oriented changes and artefact co-evolution in highly
configurable systems. Empirical Software Engineering 23, 2 (2018), 905–952.
https://doi.org/10.1007/s10664-017-9557-6

[9] Gabriel Ferreira, Momin Malik, Christian Kästner, Jürgen Pfeffer, and Sven Apel.
2016. Do #ifdefs Influence the Occurrence of Vulnerabilities? An Empirical Study
of the Linux Kernel. In Proceedings of the 20th International Systems and Software
Product Line Conference (Beijing, China) (SPLC ’16). Association for Computing
Machinery, New York, NY, USA, 65–73. https://doi.org/10.1145/2934466.2934467

[10] Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C by Taming the
Preprocessor. SIGPLAN Not. 47, 6 (June 2012), 323–334. https://doi.org/10.1145/
2345156.2254103

[11] Paul Gazzillo, Ugur Koc, ThanhVu Nguyen, and Shiyi Wei. 2018. Localizing
Configurations in Highly-Configurable Systems. In Proceedings of the 22nd Inter-
national Systems and Software Product Line Conference - Volume 1 (Gothenburg,
Sweden) (SPLC ’18). Association for Computing Machinery, New York, NY, USA,
269–273. https://doi.org/10.1145/3233027.3236404

[12] Godfrey and Qiang Tu. 2000. Evolution in open source software: a case study.
In Proceedings International Conference on Software Maintenance ICSM-94 (San
Jose, CA, USA). IEEE Comput. Soc. Press, San Francisco, CA, USA, 131–142.
https://doi.org/10.1109/icsm.2000.883030

[13] Kim Herzig and Andreas Zeller. 2013. The Impact of Tangled Code Changes. In
10th Working Conference on Mining Software Repositories (MSR ’13). IEEE Press,
San Francisco, CA, USA, 121–130. https://doi.org/10.1109/MSR.2013.6624018

[14] Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2010. Leviathan: SPL Support on Filesystem Level. In
Software Product Lines: Going Beyond, Jan Bosch and Jaejoon Lee (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 491–491. https://doi.org/10.1007/978-3-
642-15579-6_43

[15] Ayelet Israeli and Dror G. Feitelson. 2010. The Linux kernel as a case study in
software evolution. Journal of Systems and Software 83, 3 (March 2010), 485–501.
https://doi.org/10.1016/j.jss.2009.09.042

[16] Dongpu Jin, Myra B. Cohen, Xiao Qu, and Brian Robinson. 2014. PrefFinder:
Getting the Right Preference in Configurable Software Systems. In 29th ACM/IEEE
International Conference on Automated Software Engineering (Vasteras, Sweden)
(ASE ’14). ACM, New York, NY, USA, 151–162. https://doi.org/10.1145/2642937.
2643009

[17] Christian Kastner, Alexander Dreiling, and Klaus Ostermann. 2014. Variability
Mining: Consistent Semi-Automatic Detection of Product-Line Features. IEEE
Trans. Softw. Eng. 40, 1 (Jan. 2014), 67–82. https://doi.org/10.1109/TSE.2013.45

[18] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-Aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. SIGPLAN Not. 46, 10 (Oct. 2011),
805–824. https://doi.org/10.1145/2076021.2048128

[19] Christian Kröher, Sascha El-Sharkawy, and Klaus Schmid. 2018. KernelHaven:
An Open Infrastructure for Product Line Analysis. In Proceedings of the 22nd In-
ternational Systems and Software Product Line Conference - Volume 2 (Gothenburg,
Sweden) (SPLC ’18). Association for Computing Machinery, New York, NY, USA,
5–10. https://doi.org/10.1145/3236405.3236410

[20] Christian Kästner. 2013. TypeChef. Christian Kästner. Retrieved September 15,
2020 from https://ckaestne.github.io/TypeChef/

[21] Lukas Linsbauer, Thorsten Berger, and Paul Grünbacher. 2017. A Classification
of Variation Control Systems. SIGPLAN Not. 52, 12 (Oct. 2017), 49–62. https:
//doi.org/10.1145/3170492.3136054

[22] Lukas Linsbauer, Felix Schwägerl, Thorsten Berger, and Paul Grünbacher. 2021.
Concepts of Variation Control Systems. Journal of Systems and Software 171
(2021), 110796. https://doi.org/10.1016/j.jss.2020.110796

[23] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kästner, B. Ferreira, L. Carvalho,
and B. Fonseca. 2018. Discipline Matters: Refactoring of Preprocessor Directives
in the #ifdef Hell. IEEE Transactions on Software Engineering 44, 5 (May 2018),
453–469. https://doi.org/10.1109/TSE.2017.2688333

[24] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. 2015. Where Do Configuration
Constraints Stem From? An Extraction Approach and an Empirical Study. IEEE
Transactions on Software Engineering 41, 8 (2015), 820–841. https://doi.org/10.
1109/TSE.2015.2415793

[25] Leonardo Passos, Jesús Padilla, Thorsten Berger, Sven Apel, Krzysztof Czar-
necki, and Marco Tulio Valente. 2015. Feature Scattering in the Large: A
Longitudinal Study of Linux Kernel Device Drivers. In Proceedings of the 14th
International Conference on Modularity (Fort Collins, CO, USA) (MODULAR-
ITY 2015). Association for Computing Machinery, New York, NY, USA, 81–92.
https://doi.org/10.1145/2724525.2724575

[26] Rodrigo Queiroz, Leonardo Passos, Tulio Marco Valente, Claus Hunsen, Sven
Apel, and Krzysztof Czarnecki. 2017. The shape of feature code: an analysis of
twenty C-preprocessor-based systems. Software and Systems Modeling (SoSyM)
16 (2017), 77–96. https://doi.org/10.1007/s10270-015-0483-z

[27] Md Tajmilur Rahman, Louis-Philippe Querel, Peter C. Rigby, and Bram Adams.
2016. Feature Toggles: Practitioner Practices and a Case Study. In Proceedings of
the 13th International Conference on Mining Software Repositories (Austin, Texas)
(MSR ’16). Association for Computing Machinery, New York, NY, USA, 201–211.
https://doi.org/10.1145/2901739.2901745

[28] Nayan B. Ruparelia. 2010. The History of Version Control. SIGSOFT Softw. Eng.
Notes 35, 1 (Jan. 2010), 5–9. https://doi.org/10.1145/1668862.1668876

[29] Thomas Schiex and Simon de Givry (Eds.). 2019. Principles and Practice of Con-
straint Programming (Stamford, CT, USA). LNCS ’19, Vol. 11802. Springer.

[30] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Integrated Management
of Variability in Space and Time in Software Families. In Proceedings of the
18th International Software Product Line Conference - Volume 1 (Florence, Italy)
(SPLC ’14). Association for Computing Machinery, New York, NY, USA, 22–31.
https://doi.org/10.1145/2648511.2648514

[31] Shurui Zhou, Ştefan Stănciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej Wą-
sowski, and Christian Kästner. 2018. Identifying features in forks. In Proceedings
of the 40th International Conference on Software Engineering (ICSE ’18). ACM, New
York, NY, USA, 105–116. https://doi.org/10.1145/3180155.3180205

https://doi.org/10.1145/2528265.2528267
https://doi.org/10.1145/2528265.2528267
https://choco-solver.org/
https://doi.org/10.1109/ICSE.2015.35
https://doi.org/10.1007/11877028_16
https://doi.org/10.1007/11877028_16
https://doi.org/10.1007/s11219-013-9204-4
https://doi.org/10.1007/s11219-013-9204-4
https://doi.org/10.1007/s10664-017-9557-6
https://doi.org/10.1145/2934466.2934467
https://doi.org/10.1145/2345156.2254103
https://doi.org/10.1145/2345156.2254103
https://doi.org/10.1145/3233027.3236404
https://doi.org/10.1109/icsm.2000.883030
https://doi.org/10.1109/MSR.2013.6624018
https://doi.org/10.1007/978-3-642-15579-6_43
https://doi.org/10.1007/978-3-642-15579-6_43
https://doi.org/10.1016/j.jss.2009.09.042
https://doi.org/10.1145/2642937.2643009
https://doi.org/10.1145/2642937.2643009
https://doi.org/10.1109/TSE.2013.45
https://doi.org/10.1145/2076021.2048128
https://doi.org/10.1145/3236405.3236410
https://ckaestne.github.io/TypeChef/
https://doi.org/10.1145/3170492.3136054
https://doi.org/10.1145/3170492.3136054
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1109/TSE.2015.2415793
https://doi.org/10.1109/TSE.2015.2415793
https://doi.org/10.1145/2724525.2724575
https://doi.org/10.1007/s10270-015-0483-z
https://doi.org/10.1145/2901739.2901745
https://doi.org/10.1145/1668862.1668876
https://doi.org/10.1145/2648511.2648514
https://doi.org/10.1145/3180155.3180205

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Approach
	4 Related Work
	5 Conclusions and Future Work
	Acknowledgments
	References

