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a b s t r a c t

In large code bases, locating the elements that implement concrete features of a system is challenging.
This information is paramount for maintenance and evolution tasks, although not always explicitly
available. In this work, motivated by the needs of locating features as a first step for feature-based
Software Product Line adoption, we propose a solution for improving the performance of existing
approaches. For this, relying on an automatic feature localization approach to locate features in single-
systems, we propose approaches to deal with feature localization in the context of families of systems,
e.g., variants created through opportunistic reuse such as clone-and-own. Our feature localization
approaches are built on top of Spectrum-based feature localization (SBFL) techniques, supporting
both dynamic feature localization (i.e., using execution traces as input) and static feature localization
(i.e., relying on the structural decomposition of the variants’ implementation). Concretely, we provide
(i) a characterization of different settings for dynamic SBFL in single systems, (ii) an approach to
improve accuracy of dynamic SBFL for families of systems, and (iii) an approach to use SBFL as a
static feature localization technique for families of systems. The proposed approaches are evaluated
using the consolidated ArgoUML SPL feature localization benchmark. The results suggest that some
settings of SBFL favor precision such as using the ranking metrics Wong2, Ochiai2, or Tarantula with
high threshold values, while most of the ranking metrics with low thresholds favor recall. The approach
to use information from variants increase the precision of dynamic SBFL while maintaining recall
even with few number of variants, namely two or three. Finally, the static SBFL approach performs
equally in terms of accuracy to other state-of-the-art approaches, such as Formal Concept Analysis and
Interdependent Elements.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The traceability between features and implementation ele-
ents is of paramount importance for the maintenance and
volution of systems (Spanoudakis and Zisman, 2005). Feature
ocalization (FL) is the activity to recover this traceability in those
ases where it is unknown or it is highly implicit (Dit et al.,
013). When dealing with families of systems, it is even more
mportant as some features might be optional and this traceability
s mandatory to derive variants by including or excluding cer-
ain features (Assunção et al., 2017). In Software Product Line
SPL) engineering research, and more concretely in extractive
pproaches for SPL adoption (Krueger, 2001), this activity is
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considered especially useful when dealing with product variants
created in a clone-and-own fashion. FL supports the migration
of the family of systems to a more systematic reuse approach,
such as feature-oriented SPLs (Apel et al., 2013). FL is thus key
in the detection phase in re-engineering legacy applications into
SPLs (Assunção et al., 2017). For FL, in this context, it is usually
assumed that the feature names are known and, for each variant,
it is known the features it includes (Fischer et al., 2014), but
not which parts of the code correspond to each feature. The
goal of FL is to determine the traceability between features and
code.

Manual FL is considered time-consuming and error-prone
(Martinez et al., 2020), thus several approaches have been pro-
posed trying to automate this process (Rubin and Chechik, 2013b).
Recently, there is interest in trying to make those approaches
more comparable through the use of benchmarks (Strüber et al.,
2019), but overall, the performance of automatic approaches need
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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to be significantly improved for industrial uptake (Razzaq et al.,
2020). In this work, we deal with FL ‘‘after the fact’’ instead of
a solution that proactively records and maintains feature traces
during development (Ji et al., 2015; Bittner et al., 2021). Unfortu-
nately, these advanced approaches are not yet mainstream, so FL
should be considered.

We present a novel FL approach for families of systems by
dapting a technique from the software debugging field, namely
pectrum-based fault localization (Wong et al., 2016). This tech-
ique is based on the intuition that covered and uncovered parts
f tested code can help to indicate the probability of specific
ines of code having faults. Instead of using this technique to
ocate bugs in the code, we use it to locate features of an envi-
ioned SPL, resulting in the Spectrum-based feature localization
SBFL) technique. While there are existing works for SBFL in
ingle systems, to the best of our knowledge, this is the first
ork that explores the technique with dynamic analysis in the
ontext of feature location in families of systems. SBFL belongs
o the category of dynamic FL techniques as it uses execution
races, however, in this work we show its application also in
tatic mode. Static FL does not use execution traces but directly
he implementation elements (e.g., relevant abstract syntax tree
lements such as classes or methods) and usually, for the case
f families of systems, n-way comparison-based techniques for
hese elements.

To evaluate our proposed FL approach, we conduct a study to
rovide answers to the following research questions (RQs):

• RQ1: Which are the best configuration alternatives for the SBFL
technique in dynamic FL for single systems? This question is
relevant when dealing with monolithic systems that must
be decomposed into features to create families of systems.
At the same time, this question provides the basis to select a
configuration that can be later used for approaches dealing
with families of systems.

• RQ2: To which extent can the presence of variants increase the
accuracy of dynamic SBFL? Variants created through clone-
and-own are an important source of information for FL.
Therefore, it is reasonable to exploit the commonality and
variability of the variants to refine dynamic SBFL results.
This RQ focuses on investigating how beneficial the use of
variants is for SBFL.

• RQ3: How can SBFL be leveraged for static n-way comparison
of variants and what is its accuracy and performance? While
SBFL has been used in dynamic FL, certain SBFL concepts like
the spectra have similarities with formal contexts, which
are used for static FL in families of systems through For-
mal Concept Analysis (FCA) (e.g., Al-Msie’deen et al. (2013),
Shatnawi et al. (2016)). Thus, this RQ aims to compare the
novel SBFL technique results with two other state-of-the-art
baseline static FL techniques.

This work extends our previous work (Michelon et al., 2021b),
that focused exclusively on SBFL in single systems (RQ1). In
that work, we provided the results of the spectrum-based tech-
nique for FL in the original ArgoUML version of the ArgoUML
SPL FL benchmark (Martinez et al., 2018a). The ArgoUML SPL FL
benchmark provides FL challenges for different scenarios, namely
different number of variants and degree of similarity among
them. In this work, in addition to more empirical results and
analysis, we evaluate our approach considering families of sys-
tems, i.e., with the existence of variants of the system, and feature
interactions to some extent.

Concretely, the contributions of this work are:

• Dynamic SBFL in single systems: A characterization of 33
different SBFL ranking metrics with 10 threshold values for
2

each one in the original version of ArgoUML (RQ1). The
results suggest that some configurations of the technique
(i.e., combination of ranking metric and threshold) favor
precision (e.g., Wong2 0.9 to 1, Ochiai2 0.7 to 1, or Tarantula
0.9 to 1) while others favor recall (e.g., Hamming 0.1 among
many others with low thresholds).

• Dynamic SBFL improvements for families of systems: A
hybrid method to use information from variants that lead to
better performance, namely an increase in the precision of
dynamic SBFL while maintaining recall (RQ2). The increase is
visible even with few number of variants (i.e., two or three)
for scenarios in the ArgoUML SPL FL benchmark.

• Static SBFL for families of systems: In addition to experi-
menting SBFL for dynamic FL, our work also presents how
SBFL can be applied for static FL. We show that certain
configurations of ranking metrics and thresholds of SBFL
(e.g., Wong2 with 1.0) can be used for static FL of vari-
ants (RQ3). The results show that it produces the same
locations as other state-of-the-art static algorithms, such as
FCA (Al-Msie’deen et al., 2013; Shatnawi et al., 2016) or the
Interdependent Elements (IE) algorithm (Ziadi et al., 2012).

Additional contributions related to the easy uptake of the
approach, reproducibility, and ease of extension:

• Dataset: New execution traces were created for RQ2 and
RQ3 experiments using a standard format based on the
Java Code Coverage Library (JaCoCo)1 coverage reports. This
makes the approach more easily accessible compared to our
previous work (Michelon et al., 2021b), where an ad-hoc
pipeline to run the experiments and an ad-hoc format of the
execution traces were used.

• Tooling: The SBFL technique is integrated in the Bottom-Up
Technologies for Reuse framework (BUT4Reuse)2 (Martinez
et al., 2015) and can be used through its user interface as
well as programmatically through its Java API, as we did for
the experimentation pipeline related to RQ2 and RQ3.

The mentioned dataset and the experimentation pipelines of
this work are publicly available.3

This paper is structured as follows: Section 2 motivates our
work with an illustrative example, which will be used later as a
running example. Section 3 presents related work. Then, Section 4
details our proposed SBFL approaches, and Section 5 presents
their evaluation in the case study. Section 6 presents the re-
sults and discussion. Section 7 points the threats to validity and
Section 8 concludes the paper and outlines further perspectives.

2. Motivating and running example

As a motivating and running example, we use one illustrative
family of drawing application variants (Fischer et al., 2014). An
imaginary company started with one product to draw lines and
wipe. Then, a new customer required the capability to set the
color of the lines and the removal of the wipe functionality.
Product 1 was then reused in a clone-and-own fashion to tailor
this new Product 2. Later, another customer wanted to include
rectangles, also with color, so a new Product 3 was created
from Product 2. Table 1 shows the features implemented in
each variant. Therefore, the company needs to maintain three
different variants for each customer, with the associated costs to
propagate shared bug fixes or enhancements. They realized that

1 https://www.jacoco.org/
2 https://but4reuse.github.io/
3 https://github.com/jabiercoding/spectrum_based_localization

https://www.jacoco.org/
https://but4reuse.github.io/
https://github.com/jabiercoding/spectrum_based_localization
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Table 1
Draw application products and their features.
Products Features

BASE LINE RECT COLOR WIPE

Product 1 ✓ ✓ ✓
Product 2 ✓ ✓ ✓
Product 3 ✓ ✓ ✓ ✓

this clone-and-own approach did not scale up for them as this
variant management approach introduced significant technical
debt for the maintenance and evolution of the product family as
a whole (Wolfart et al., 2021).

While this is a simplified illustration of the issues, plenty of
ndustrial cases are cataloged in similar situations with a will to
xtract an SPL (Martinez et al., 2017; Wolfart et al., 2021). In
ur drawing applications case, traceability between features and
ource code was implicit and it was somehow lost. Recovering
his traceability can help to annotate the source code to create an
nnotative-based SPL and having a unique variability-rich appli-
ation (e.g., with Munge (Sonatype, 2011), or Antenna (Pleumann
t al., 2010)), or to extract reusable assets in a source code
ompositional approach (e.g., with FeatureHouse source code su-
erimposition (Apel et al., 2009)). This transformation phase is
ut of the scope of this work, as we are focusing on FL for the
etection phase (Assunção et al., 2017). However, the traceabil-
ty is paramount to support the transformation. Based on that,
evelopers need certain automation with accurate FL results to
acilitate their task.

Recapping our illustrative example, the draw application is a
amily of systems with three Java programs4 of around 300 lines
f code (LoC) implemented in three to four Java files. Listing 1
hows an excerpt of the three files of Product 1. The envisioned
cope of the drawing applications family will allow drawing lines
r rectangles, only in black or with different colors, and an op-
ional wipe function. The COLOR feature is clearly a cross-cutting
eature as it will have interactions with LINE and RECT.

We assume that the information about which features are
resent in each product is known (Table 1). However, the trace-
bility of features to the Java source code is to be recovered.
or instance, in the excerpt of the Main.java file for Product 1,
hown in Listing 1a, the fields in lines 3 and 4 (toolPanel and
anvas) are part of the BASE feature whereas lineButton and
ipeButton fields are for the LINE and WIPE features, respec-
ively. The first two lines within the method initContentPane
10 and 11) are also for the LINE and WIPE features, respectively,
hereas the rest of the method is for BASE. The last method of
he excerpt belongs completely to BASE. In this small illustrative
et of variants, manually performing feature localization might be
traightforward. However, it becomes challenging with thousands
f Java files and several features as it is the case in complex
ndustrial settings.

Automatic FL approaches relying on n-way comparison of
he products are usually set-based, trying to distinguish features
ased on the intersections of the existing variants. This is illus-
rated in Fig. 1. For instance, we can observe how WIPE can be
istinguished through the intersections, as it is the only feature
hat is specific to Product 1 (P1 in the figure). Following with
he example in Listing 1a, we are able to locate the wipeButton
ield, and we know that WIPE refines the method initContent-
ane(). However, these approaches might easily fail to recover
ome of the features or feature interactions. For instance, BASE
nd LINE are always present together in the three products, then

4 V1, V2 and V3 at https://github.com/jku-isse/dpl/tree/master/example/
mplementations
3

1 public class Main extends JFrame {
2
3 protected JPanel toolPanel = new JPanel();
4 protected Canvas canvas = new Canvas();
5
6 JButton lineButton;
7 JButton wipeButton;
8
9 public void initContentPane() {

10 toolPanel.add(lineButton);
11 toolPanel.add(wipeButton);
12 contentPane.add(toolPanel , BorderLayout.WEST);
13 contentPane.add(canvas, BorderLayout.CENTER);
14 }
15
16 public void initLayout() {
17 contentPane = getContentPane();
18 contentPane.setLayout(new BorderLayout());
19 toolPanel.setLayout(new

BoxLayout(toolPanel ,BoxLayout.Y_AXIS));
20 }
21 ...
22 }

(a) Excerpt of Main.java content in Product 1.

1 public class Canvas extends JComponent
2 implements MouseListener ,

MouseMotionListener {
3 ...
4 public void mousePressedLine(MouseEvent e) {
5 if (newLine == null) {
6 start = new Point(e.getX(), e.getY());
7 newLine = new Line (start);
8 lines.add(newLine);
9 }

10 }
11 ...
12 }

(b) Excerpt of Canvas.java content in Product 1.

1 public class Line {
2 ...
3 private Point startPoint , endPoint ;
4 ...
5 }

(c) Excerpt of Line.java content in Product 1.

Listing 1: Example of source code of Product 1 of the drawing
applications family.

Fig. 1. Intersections of the products P1, P2 and P3.

it will not be possible, for these techniques, to directly distinguish
them and locate the source code that is specific for the LINE fea-
ture. The number of products and their diversity is recognized as a
sensible factor for the success of feature localization techniques in
families of systems (Michelon et al., 2019; Martinez et al., 2018b).

https://github.com/jku-isse/dpl/tree/master/example/implementations
https://github.com/jku-isse/dpl/tree/master/example/implementations
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Fig. 2. Spectrum-based Fault localization.

Other existing techniques, mainly used for single systems,
an be combined with these set-based techniques. This is the
ase of approaches based on text analysis. For instance, trying
o locate the LINE feature based on the name and description
f the feature, we can obtain that the Line.java class might
e associated to the LINE feature, or the method wipe() in
anvas.java can be associated to the WIPE feature. In this work
e do not consider text-based techniques (Razzaq et al., 2018;
homas et al., 2013; Mahmoud and Bradshaw, 2015) as we rely
n dynamic and static feature localization techniques (Dit et al.,
013; Robillard, 2008; Robillard and Murphy, 2002; Rubin and
hechik, 2012; Wilde et al., 2001; Cornelissen et al., 2009).

. Background and related work

The following sections introduce the basic concept for our
pproach and describes the related work to our study.

.1. Spectrum-based localization techniques

Spectrum-based localization (SBL) techniques are traditionally
sed for fault localization (Wong et al., 2016). They use a spec-
rum where each trace represents a test case and each node
epresents the lines of code of the program under analysis. As
epicted in Fig. 2, SBL assigns a 1 in the spectrum when a line
f code (row) is executed at least once for a particular test case
column). The last row of the spectrum describes the result of the
ests; it assigns 1 when the test passes and 0 when it fails.

Several ranking metrics (Wong et al., 2016) have been proposed
hat use a spectrum to construct a ranking of suspiciousness. This
anking points developers to the lines of code that are potentially
ausing the issue, restricting the search to a segment of the source
ode that is relevant for examination or debugging. The ranking
etrics are defined by formulas that use the number of executed
nd non-executed lines of code that are passing or failing a test.
n this work, we represent the lines that were executed as ep and
f , and those that were not as np and nf .
Wong et al. (2016) survey a broad catalog of SBL ranking

etrics. A few examples of the simplest metrics are Wong1 (ef ),
ong2 (ef −ep), or Hamming (ef +np). Moreover, well established

anking metrics are Ochiai (Abreu et al., 2007) or Tarantula (Jones
t al., 2002), formulated as follows:

chiai =
ef√

(ef + nf ) × (ef + ep)
(1)

Tarantula =

ef
ef +nf

ef
+

ep (2)

ef +nf ep+np

4

A calculated ranking metric assigns to each node a continuous
normalized value between 0 (apparently completely unrelated)
and 1 (apparently faulty). Therefore, the values within the range
will have to be analyzed under a certain user-defined threshold.

Beyond fault localization, SBL has also been used in the context
of mapping program features to code, known as SBFL. Wilde and
Scully (Wilde and Scully, 1995) introduced the idea of using tests
to map features to program components. Their approach builds
program spectra based on the statement coverage of every test
run and then applies a simple heuristic. The heuristic assigns a
component to a feature if it is only used in the runs that use
that feature. Eisenbarth et al. (2003) later proposed a set of
advanced heuristics that assign six fine-grained categories to the
program components based on the association level between the
component and the feature, ranging from specific to irrelevant.

However, these approaches only provide a discrete range
heuristics whose coverage items are categorized into a fixed set of
categories. Therefore, novel approaches were introduced that ap-
ply, instead, a continuous range heuristic based on the adoption of
the Tarantula (Malburg et al., 2014) and Ochiai (Perez and Abreu,
2014; Malburg et al., 2014) heuristics, which are well-known
from the spectrum-based fault prediction domain. Therefore, they
calculate a numerical value between 0 and 1 that describes the
likelihood of the association between components and feature,
overcoming the inaccuracy of a categorical association.

Perez and Abreu (2014) introduced Spectrum-based Feature
Comprehension (SFC), which expanded the spectrum feature lo-
calization scope to the task of acquiring program comprehension.
In particular, beyond improving feature localization using the
Ochiai coefficient, they leverage information-foraging theory to
improve the intuitiveness of the feature localization diagnostic re-
port. Furthermore, they extend this approach by allowing feature
localization through user participation (Perez and Abreu, 2016)
and implement these techniques into a tool-set (Castro et al.,
2019) that reports the program analysis to the user.

These pieces of work on SBFL are complementary to ours
regarding RQ1 as we explore different settings for dynamic SBFL
in single systems, but not for RQ2 and RQ3.

3.2. Dynamic analysis in hybrid techniques

This section introduces the basic concepts of dynamic analysis
and related work of hybrid techniques relevant for RQ2.

Dynamic techniques started to be used for debugging, testing,
and profiling, typically by analyzing program execution through
interpretation (e.g., using the Virtual Machine in Java) or instru-
mentation (Cornelissen et al., 2009). Since 1995 feature localiza-
tion received more attention, where dynamic analysis has been
proposed to collect information about a program at runtime (Ru-
bin and Chechik, 2013b). One of the first dynamic techniques was
proposed by Wilde and Scully (1995). Their technique is based on
the execution of different test cases of a single system by using a
test coverage monitor. It was evaluated on a single system with
15,000 LoC containing test cases that exercise features. The re-
sults show high precision to identify pieces of the system that are
unique to a particular feature, but show low precision in larger
sets of code that are for general purposes and exist in multiple
features. Their technique requires heavy user involvement, as the
user has to specify the set of test cases invoking each feature.

Most of the existing dynamic techniques were used combin-
ing other techniques, such as static and information retrieval
analysis (Eisenbarth et al., 2003; Koschke and Quante, 2005;
Asadi et al., 2010; Rohatgi et al., 2008). On the one hand, dy-
namic analysis can collect precise information about the program
execution but yields many false negative results. One of the rea-
sons is because the dynamic analysis can detect only functional
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features (Rubin and Chechik, 2013b). On the other hand, for
example, static analyses yield many false positives but can locate
any type of features (Rubin and Chechik, 2013b; Koschke and
Quante, 2005). Therefore, hybrid techniques combining dynamic
and static analyses have been proposed to try to complement
each other (Rubin and Chechik, 2013b).

Existing hybrid approaches consider only traces of a single
ystem and at coarse levels of granularity (generally the method-
evel) (Michelon et al., 2021a). The hybrid approach proposed by
ichelon et al. (2021a), which we refer to subsequently as Mich-
lon et al. Hybrid (Michelon et al., 2021a) for later comparison,
ombines a dynamic analysis with a static analysis of the source
ode. The dynamic analysis considers scenarios from features
anually exercised or from traces obtained from coverage tests.
he static analysis obtains overlapping traces between features
nd thus can filter some execution traces. Their results show high
recision but not high recall for the ArgoUML system. Further,
hey also considered as true positives the source code that is
ommon for all features (i.e., the base of ArgoUML). A way to
mprove the recall of their hybrid approach would be to get rid
f the common core of the system, which is part of the many
alse negatives. Also, different execution scenarios that retrieve
he execution traces could improve the results.

Aiming to improve the performance of existing hybrid fea-
ure location techniques, we thus combined SBFL with execution
races of different variants/products of a system to investigate
ow beneficial is the use of variants to obtain higher precision
nd recall. Another aspect we take into account in RQ2 is to
nalyze SBFL with dynamic analysis of system variants at fine
ranularity level. The ArgoUML SPL FL benchmark (Martinez et al.,
018b) thus enables us to evaluate our approach and compare the
esults of RQ2 with the existing approach from Michelon et al.
ybrid (Michelon et al., 2021a).

.3. Static comparison-based techniques

This section presents background information and related
orks relevant for RQ3.

ormal concept analysis (FCA). FCA is a mathematical method
(Ganter and Wille, 1999) that analyses attributes to group ele-
ments that share common attributes. Fig. 3 shows two examples
to understand the input and output of FCA for statically analyzing
variants. In Fig. 3(a), we show the formal context that is created
or our running example. This formal context captures a mapping
etween a set of attributes (the source code elements in our
ase), and objects (the product variants). With this information,
CA creates a concept lattice as shown in Fig. 3(b). The elements
n the different concepts are disjoint. For instance, Concept 0
re the elements that are common to all products, Concept 3
roups the elements that are specific to Product 1, and Concept 2
roups the elements that are common to Product 2 and Product
, but not present in Product 1. The arrows in this concept lattice
an be followed to know which are the concepts (features in our
ontext) for a specific product. For instance, Product 1 (bottom-
eft in Fig. 3(b)) is based on Concepts 3, 1, and 0. In the same
ay, Product 2 is based on Concepts 4, 1, 2, and 0.
For the FL task at hand, each concept with at least one element

is a block potentially related to a feature. FCA has been used
in that direction in studies such as the ones by Al-Msie’deen
et al. (2013) and Shatnawi et al. (2016). In BUT4Reuse, FCA is a
technique for block identification implemented with the Galatea
FCA library5 (Falleri, 2009).

5 https://github.com/jrfaller/galatea
5

Interdependent elements (IE). IE is a block identification technique
from a set of variants proposed by Ziadi et al. (2012). This
technique is based on calculating interdependent elements, which
create element groups that are feature candidates. IE are defined
as follows: given a set A of artifacts that we want to compare, two
elements (of artifacts of A) e1 and e2 are interdependent if and only
if they belong to exactly the same artifacts of A. Therefore, e1 and
e2 are interdependent if the two conditions in Eq. (3) are fulfilled.

∃a∈A e1 ∈a ∧ e2 ∈ a
∀a∈A e1 ∈a ⇔ e2 ∈a

(3)

The consequence of these rules is that the intersections of the
variants are distinguished. For example, in our running example,
similarly to FCA, we will have one block with the elements that
are common to all products, three blocks for the elements that are
specific to each product, and, for instance, another block grouping
the elements that are common to Product 2 and Product 3,
but not present in Product 1. This technique was integrated in
ExtractorPL (Ziadi et al., 2014), and later in BUT4Reuse (Martinez
et al., 2015) as a block identification technique. It has been also
integrated for the specific case of feature candidates identification
in Cyber–Physical Production Systems variants (Meixner et al.,
2020).

Strict feature-specific (SFS). Both FCA and IE identify blocks that
are potential features. This way, they are useful for feature iden-
tification when the feature list is not completely known before-
hand. Notice that both FCA and IE work at the level of the variants,
but no information about the features is embedded. Then, these
blocks should be manually analyzed. However, to fully automate
FL, a final step is needed to assign features to these blocks. SFS is
a basic feature assignation approach that takes as input a set of
known features and blocks, and apply the following two rules. A
feature is located in a block when:

• The block always appears in the artifacts that implements
this feature and,

• The block never appears in any artifact that does not imple-
ment this feature.

For example, if we take the block Concept 2 from Fig. 3(b),
and we want to check if it corresponds to the COLOR feature,
we find that it always appears in the products where COLOR is
present (Product 2 and Product 3), and never where it was not
there (Product 1). So this block is assigned to COLOR using SFS. But
if we take the same block Concept 2 to check if it corresponds to
RECT, we have that it always appears in the products where RECT
is present (Product 3), but it also appears in Product 2 which has
not the RECT feature. So the second rule is not satisfied. These
principles are similar to locating distinguishing features using diff
sets (Rubin and Chechik, 2012).

In this work we refer to FCA+SFS and IE+SFS as the use
of the two different block identification approaches (FCA and
IE respectively) followed by the SFS method to assign features
to blocks. Regarding tool support, block identification and fea-
ture localization are activities that can be seamlessly chained in
BUT4Reuse (Martinez et al., 2015).

4. Spectrum-based feature localization approach

This section explains our proposed FL techniques. Section 4.1
presents the abstraction mechanisms of the implementation ele-
ments to be located. Then, Section 4.2 presents the dynamic SBFL
of single systems and Section 4.3 its enhancement for families of
systems. Finally, Section 4.4 presents the static SBFL approach.

https://github.com/jrfaller/galatea
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Fig. 3. Formal Concept Analysis (FCA) illustrated through the draw application running example.
.1. Elements to be located

Fig. 4 shows the abstractions used in the implementation
lements to be located in this work. In Fig. 4(a), the Covered Line
lement represents an executed line of code, which is defined in
erms of the file name that was executed (e.g., Canvas.java) and
he concrete line number within that file. JaCoCo coverage reports
an be exported to XML (examples in our dataset6) that can be
ater adapted to this abstract representation as a set of Covered
ine Elements. For Product 1 of our running example (Section 2),
f we launch the JaCoCo coverage tool, draw a line, and close the
rawing application, the JaCoCo XML coverage report will return
2 Covered Line Elements.
Fig. 4(b) shows elements of abstract syntax trees (ASTs) of

ource code, which is Java in our case. This abstraction was
lready used in Fig. 3 to represent the elements in the draw
pplication. The Compilation Unit corresponds to Java files. A
ava file has Types (usually one) and it can have several Im-
orts. A Type has Fields and Methods, and each Method has a
ethod Body. The abstractions from Covered Line Elements to

ava source code syntax tree are implemented as adapters in
UT4Reuse (Martinez et al., 2015). BUT4Reuse together with the
dapters allow to seamlessly chain different block identification
nd FL approaches. The Java adapter was already available, but
he JaCoCo XML coverage reports adapter is a contribution of
his work and currently available in the tool. Fig. 4(b) shows an
xcerpt of the concepts of the Java adapter of BUT4Reuse, which
s based on JDT7 (Eclipse Java Development Tools). To be able
o count the elements retrieved, we then parsed the XML report
iles with our implementation.2 For example, when abstracting
he elements of the source code of Product 1, 157 of these types
f elements were retrieved with our implemented parser.

6 https://github.com/jabiercoding/spectrum_based_localization/tree/master/
lugins/spectrum/execTraces
7 https://www.eclipse.org/jdt/
6

Fig. 4. Abstraction of the implementation elements to be located.

In our scenario of families of systems, a similarity metric is
needed to know when an element is the same as another element
in a different variant. Similarity in software engineering (i.e., the

https://github.com/jabiercoding/spectrum_based_localization/tree/master/plugins/spectrum/execTraces
https://github.com/jabiercoding/spectrum_based_localization/tree/master/plugins/spectrum/execTraces
https://www.eclipse.org/jdt/
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matching strategy among elements) is a difficult problem. We
rely on id-based and signature-based similarity, providing a dis-
crete value (boolean). For the source code elements, the ‘‘ids’’
are created through fully qualified names and method signatures.
And for the Method Body, we compare the method signature and
the text of the body of the method. It is a design decision to not
consider statement logic/semantic inside the method. This is chal-
lenging in terms of similarity calculation if comparing different
source code variants, and we consider that the granularity level
of FL at method-level is already sufficient for our context.

A Covered Line Element will be the same as another if the
ther refers to exactly the same file name and line number.
owever, this only holds for comparing execution traces of single
ystems. In the case of variants, the files can be changed, e.g., a
ethod of a feature is not in a file because this variant does not
ave this feature. Thus, this can change the line numbers of the
est of the code in that file. To compare Covered Line Elements
etween variants, in this work, we used our implemented parser
o transform Covered Line Elements to Java source code elements.
This transformer allows knowing if covered elements refer to the
same Method or Field initialization, for example.

4.2. SBL for single systems as a dynamic FL technique (RQ1)

Reference to the running example. In dynamic FL, we should ex-
ercise a specific feature manually or through a test case, and
get the execution traces through source code coverage analysis
tools such as JaCoCo. As mentioned before, for FL in Product 1
of our running example, we can exercise LINE by launching the
overage tool and drawing a line returning 82 executed lines.
nd then, to exercise WIPE, we can launch the coverage tool and

we click on the wipe button. This returns 55 executed lines. In
large systems (Dit et al., 2013; Couto et al., 2011; Salman et al.,
2013; Revelle et al., 2010; Eaddy et al., 2008), full coverage of
a feature might not be feasible. However, the intuition is to use
these traces to locate feature source code that is highly related
to a feature. For these two traces, it is reasonable to think that
their intersection (shared covered lines) corresponds to BASE (50
lines) while the others might be specific to LINE (32 lines) and
WIPE (5 lines), respectively. Listing 2 shows these concrete lines
for WIPE obtained by running our FL implementation to show that
the result is precise when validated by a domain expert or when
compared with a ground-truth.

In Main.java
public void actionPerformed(ActionEvent e) {
canvas.wipe();

}

In Canvas.java
public void wipe() {
this.lines.clear();
this.repaint();

}
}

Listing 2: Excerpt of Main.java content in Product 1.

For Product 1 we do not have automatic test cases, but if they
xist and we know which feature is being exercised per test case,
his can also be used as feature exercises. Once we have feature
xecution traces, SBFL can be applied.

pproach. The application of SBFL in single systems was the
ain contribution of our previous work (Michelon et al., 2021b).
e use the SBL for FL using a Spectrum like the one shown in

ig. 5. Compared to fault localization, our traces are executions
f the program purposely exercising a given feature (i.e., manual
7

Fig. 5. Dynamic SBFL for single systems.

executions or tests that we know are related to a given feature).
The result will be 0 for the traces that belong to the feature that
we want to locate, i.e., as if it was the ‘‘faulty’’ code to locate. The
ranking obtained when applying one of the ranking metrics will
be based on the suspiciousness of each line of code belonging to
a feature under analysis.

4.3. Enhancement of dynamic SBFL for families of systems (RQ2)

Reference to the running example. The presence of variants can
help us to reason on dynamic SBFL results. For instance, in Listing
1a, the method initContentPane() is an initialization method.
Therefore, it is executed for all manual execution traces we do
in Product 1. SBFL in single systems will most probably suspect
that it is a BASE method. However, it is not complete for BASE
as it also has statements related to WIPE and LINE. By looking at
Product 2 or Product 3, that does not have WIPE, we will notice it,
as the statement toolPanel.add(wipeButton) is missing for
this method.

Approach. Once we have the SBFL results for a single system
(e.g., a reference variant we use for testing) we transform the
Covered Line Elements to the JDT Elements that they refer to. This
transformer was explained in Section 4.1. Then, from the resulting
set of JDT Elements for each feature, the approach is based on:

• Removing all elements in common with variants that do not
contain the feature. The intuition is that an element of a
feature cannot appear in a variant without that feature.

• Removing all elements that are not present in a variant that
contains the feature. The reasoning is that an element of a
feature must appear in all variants with that feature.

This will discard, from the results, several elements that are
likely not part of the feature. As an illustrative example, imagine
that we have variants A, B, and C. Both variants A and B contain
feature F1 but variant C does not have F1. Variant A has elements
e1, e2 and e3, Variant B has elements e1 and e2, and Variant C
has element e1. The results for SBFL in the reference variant A
returned that F1 is located in e1, e2, and e3. This is the input
for our enhanced technique with the two rules. The first rule
will look into variant C (the one without F1) and discard e1 as it
appears in C. After that, the second rule will look into the variants
with F1, and when reaching variant B, it will be noticed that e3 is
not present in this variant. Therefore, e3 will be discarded as well
because it does not appear in B that has F1. The refined results
for SBFL will be then just e2.
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Fig. 6. Static SBFL for families of systems.

.4. SBFL for families of systems as a comparison-based technique
RQ3)

eference to the running example. The usage of comparison-based
echniques for the running example was already illustrated and
iscussed in Section 3.3. The running example of a draw appli-
ation contains four features besides the core of the application
BASE): LINE, RECT, COLOR, and WIPE. The comparison-based
echnique is able to map program features to code when com-
aring the common and variable code among different features
roducts. In this way, a program element existing in a variant
ontaining LINE and not present in any other feature variant
eans that the program element belongs to LINE.

pproach. One of the contributions of this work is to show that it
s possible to reuse the SBL technique for n-way system compari-
on. Fig. 6 presents how the spectrum is encoded to achieve it. In
omparison to Fig. 5, following the fault localization analogy, the
races are the variants and the nodes are the implementation ele-
ents, in this case JDT Elements, and not lines of code. Therefore,

he result is 0 in the case that the variant contains the feature (as
f the fault was there following the analogy), while in Fig. 5 the
esult is 0 if it is the feature to be located.

Now, if we create the spectrum and we consider the ranking
etric Wong2 (ef − ep) with the maximum 1.0 as threshold, we
ill be encoding the same principles in a SBL way. As further
xplanation, ef is rewarding the elements that appear in the vari-
nts with the target feature, while −ep is penalizing the elements
hat appear in variants without the target feature. Using the 1.0
s threshold will take only the elements where it is always this
ase.

. Evaluation setup

Fig. 7 presents the design of the evaluation of the proposed
pproach of this work. Each RQ has its own experiment protocol,
.e., input assets, approach for feature localization, and evaluation,
hich we explain in detail in the following subsections. Over-
ll, RQ1 evaluates a dynamic approach combined with SBFL for
ocating features in single systems. The RQ2 focuses on FL for a
amily of systems. For answering RQ2, we refine dynamic analysis
esults with the commonality and differences of execution traces
etween features of variants to afterward apply the SBFL. In
Q3, we also focus on FL for a family of systems, but instead of
pplying dynamic approach combined with SBFL, we only applied
comparison-based static SBFL.
8

.1. Case study

ArgoUML is a Java-based open-source tool for modeling soft-
are systems in the Unified Modeling Language (UML). The Ar-
oUML SPL FL benchmark (Martinez et al., 2018a) provides a
eature location ground-truth for eight optional features within
he ArgoUML source code. Six features are related to different
ML diagrams and two features are cross-cutting features related
o Logging support, and Cognitive support, which analyzes the
iagrams and provides critics about how to improve them. The
eature location ground-truth was created based on manual an-
otations in the source code using the original ArgoUML (Couto
t al., 2011). From a total of 148 KLoC in ArgoUML, each feature
ontains from 1,579 to 16,319 LoC (Martinez et al., 2018a). The
anual FL took around 4 months per feature and 0.7 months
er feature-specific KLoC (Martinez et al., 2020). The duration in
his case study, and the error-proneness of the process (Martinez
t al., 2020), is also a motivation to investigate automatic FL.
Considering the created ArgoUML SPL and a set of variants

anging from one with all optional features selected (i.e., the
riginal ArgoUML) to one with all the optional features dis-
bled, Couto et al. (2011) reported metrics regarding object-
riented complexity and SPL complexity. Regarding all the
etrics reported, the number of packages can vary between 55
nd 81, while the number of Java types can vary between 1,243
nd 1,666. The scattering degree (i.e., the number of feature anno-
ations) for the two cross-cutting features Logging and Cognitive
upport is 1,287 and 319 annotations, respectively, while for the
ther features can range between 64 and 167.
The benchmark is suitable for FL in families of systems, as it

rovides 15 predefined scenarios in that regard. The scenarios are
seful to check how sensible FL techniques are with respect to the
umber of variants or the similarity among them. The Original
rgoUML scenario can be used for FL in single systems. There are
0 scenarios with different numbers of variants (2 to 10, 50 and
00). These 10 pre-defined scenarios were created by selecting
andomly different possible configurations of the eight features,
ith the condition that all the features appear in the scenario.
hen there are three scenarios that have special properties: The
airWise scenario contains nine variants with full pair-wise fea-
ure coverage, the Traditional scenario of 10 variants is one set of
onfigurations that has been used in previous literature (e.g., Al-
sie’deen et al. (2013)), and the scenario All that contains all
ossible variants, namely 256 different product configurations.
The benchmark provides its own granularity level for the

xpected FL results. It is based on traces to Java types, methods,
nd what is referred to as Refinement of methods or types.
or instance, a method might not completely correspond to a
eature, but some statements within it might be related to this
eature. Considering all features, there are traces related to 439
omplete types, 44 complete methods, 388 type refinements, and
71 method refinements.
Taking the ArgoUML SPL FL benchmark, several FL techniques

ave been proposed to locate features8 statically in sets of vari-
ants (Michelon et al., 2019; Müller and Eisenecker, 2019; Mortara
et al., 2020; Cruz et al., 2019) as well as a hybrid (static and
dynamic) FL approach (Michelon et al., 2021a). Our approach is
novel compared to these previous works, especially with regard
to RQ2. Finally, for RQ3, the objective is to check whether SBFL is
suitable for static analysis as well.

Unfortunately, other benchmarks were not possible to use.
The Eclipse FL Bench (Martinez et al., 2018b) is for locating
features at the level of components (i.e., Eclipse plugins) and not
for the source code within these components. Both the Linux

8 https://variability-challenges.github.io/2018/ArgoUMLSPL

https://variability-challenges.github.io/2018/ArgoUMLSPL
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Fig. 7. Illustration of the approach to respond to the research questions.
ernel (Xing et al., 2013) and the Marlin (Krüger et al., 2019) code
ere programmed in C. Our implementation is developed for Java
rograms, thus, different adaptations and dependencies would be
equired in order to use other benchmarks.

.1.1. Evaluation metrics
Similar to other FL techniques, we used the standard preci-

ion, recall and f1 metrics to assess performance of the proposed
approaches. To obtain these metrics, we need to extract the
True Positives (TP), False Positives (FP) and False Negatives (FN).
We apply such metrics at different granularity levels depending
on the experiment. In global, they are line, method, type and
benchmark traces level. A TP refers to a trace which has been
appropriately located at its corresponding feature (hit). An FP
refers to a trace which has been located in a feature, when it
should have not (false alarm). An FN refers to a trace which has
not been located in a feature when it should have (miss). The
equations for the metrics are obtained as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 =
2 × (precision × recall)

precision + recall
(6)

For type and benchmark metrics, we used the ground-truth
provided by the ArgoUML SPL FL benchmark. Type-level ground-
truth can be obtained in a straightforward way from the bench-
mark ground-truth. This is because for the Type-level it is only
needed to get the unique Types that appear for each feature,
independently if the trace refers to the whole type, method, or
refinement of type or method. However, to compute the met-
rics at the line-level (i.e., part of the evaluation of RQ1), we
used a diff library for patches of code.9 This library was used
for performing the comparison operations between textual data.
Concretely, for each type (i.e., Java class), the library compares

9 https://github.com/java-diff-utils/java-diff-utils
9

(line by line) the text from the located lines of the feature, with
the text of the available ground-truth. In this case, the ground-
truth can be found in the scenarios available in the ArgoUML
SPL FL benchmark, i.e., for each feature, there is a variant that
contains only its source code plus the base source code. This
textual comparison has been already used in previous work on
feature localization (Michelon et al., 2021a, 2020, 2022). For the
ground-truth at the method-level (also as part of RQ1), it was
considered a method signature as part of a feature if a feature
has at least one line included inside the method body.

6. Results and analysis

By adopting the evaluation setup presented in the previous
section (Fig. 7), we conducted the study to evaluate the proposed
approach. In the following, we present the experimental protocol
and the results in order to answer each of the three RQs.

6.1. RQ1: Dynamic SBFL in single systems

6.1.1. Experimental protocol
Exercising the features. We reused execution traces from Mich-

elon et al. Hybrid (Michelon et al., 2021a). These traces were
made publicly available10 in files with data about the lines of code
that were executed per feature. Two scenarios were analyzed: (i)
manual exercises and (ii) exercises from existing tests that are
related to the features. Videos of the manual feature executions
can be watched as part of the supplementary material of that
work (Michelon et al., 2021a), and the test cases (1,198 in total)
originate from Fischer et al. (2020). By reusing the feature exe-
cution files, we are able to compare the current results with the
ones reported by Michelon et al. Hybrid (Michelon et al., 2021a)
approach. Creating our own manual executions or using different
test cases might introduce a significant bias. This is because of the
nature of dynamic approaches, which results are highly sensitive
to this input.

10 Dataset with feature execution traces: https://doi.org/10.5281/zenodo.
5035177

https://github.com/java-diff-utils/java-diff-utils
https://doi.org/10.5281/zenodo.5035177
https://doi.org/10.5281/zenodo.5035177
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Table 2
Characteristics of the feature exercises.
Feature Manual

ELoC FSLoC FLoC (Martinez et al., 2018a) EFLoC (Michelon et al., 2021a)

ActivityDiagram 20,185 1,139 2,282 29% (34%)
CollaborationDiagram 19,000 1,028 1,579 34% (37%)
DeploymentDiagram 19,980 1,590 3,147 41% (41%)
SequenceDiagram 18,537 1,562 5,379 30% (30%)
StateDiagram 19,534 1,288 3,917 36% (36%)
UsecaseDiagram 19,320 1,312 2,712 36% (36%)

Average 19,426 1,320 2,169 34% (36%)

Feature Tests
ELoC FSLoC FLoC (Martinez et al., 2018a) EFLoC (Michelon et al., 2021a)

ActivityDiagram 3,091 78 2,282 1% (2%)
CollaborationDiagram 3,095 42 1,579 2% (2%)
DeploymentDiagram 2,965 22 3,147 ≈0% (0%)
SequenceDiagram 2,984 5 5,379 ≈0% (0%)
StateDiagram 3,542 482 3,917 6% (6%)
UsecaseDiagram 3,061 64 2,712 1% (1%)
Logging 3,009 940 2,159 3% (8%)
Cognitive 9,119 6,071 16,319 14% (14%)

Average 3,858 963 4,687 3% (4%)
B
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Table 2 presents a characterization of these feature exercises,
here: ELoC (Exercise LoC) is the total number of unique LoC

or the exercise of each feature. FSLoC (Fully-specific LoC) is
he number of LoC from ELoC that are part of the feature and
ever appear in the exercise of other features. FLoC (Feature
oC) is the total number of LoC of the feature as per the bench-
ark data (Martinez et al., 2018a). Notice that each FSLoC is not
ecessarily a FLoC as it might be just a ‘‘coincidence’’ that, in
he execution traces, no other feature executed that line. EFLoC
Exercise Feature LoC) is the percentage of the total number of
oC of the feature exercised from the execution traces reused
rom Michelon et al. Hybrid (Michelon et al., 2021a). EFLoC is the
atio of FLoC to the execution traces of the corresponding feature
cenario, and also in parentheses, the ratio considering traces
f all feature scenarios. By looking at EFLoC and FLoC metrics,
t is possible to see how many lines of code of a feature were
xecuted. This means that the results of the dynamic approach
ith SBFL using manual execution traces is favorable for higher
ecall in comparison to the test execution traces. However, the
esults are limited to high recall, because, on average, around 36%
f the FLoC were executed for the manual executions and 4% for
he tests. Therefore, improving the ratio of EFLoC and FLoC would
mprove the recall of the FL.

Feature localization. As mentioned before, two aspects are key
or SBFL techniques: (i) the metric used to rank and (ii) the
hreshold to decide when a line of code is suspicious enough to
e considered part of a feature. The threshold is needed as the
enchmark does not consider probability as part of the metrics
omputation. In this work, we report the results using several
ombinations of ranking metrics and threshold values. Concretely,
3 ranking metrics11 with 10 threshold values for each one (0.1,

0.2, . . . , 0.9, 1.0) were used. We refer in this paper to the results
by using the name of the ranking metric followed by a threshold,
e.g., Wong1 1.0, where Wong1 is a ranking metric and 1.0 is a
threshold. The goal is not to overfit the technique to this dataset
by using those 330 combinations, but to provide an overview
of what can be the results of SBFL. We implemented the SBFL
technique using the Stardust Java library.12

11 The 33 ranking metrics (Naish et al., 2011) used in this study are: Ample,
nderberg, Arithmetic Mean, Cohen, Dice, Euclid, Fleiss, Geometric Mean, Good-
an, Hamann, Hamming, HarmonicMean, Jaccard, Kulczynski1, Kulczynski2, M1,
2, Ochiai, Ochiai2, Overlap, Rogers Tanimoto, Rogot 1, Rogot 2, RussellRao,
cott, SimpleMatching, Sokal, SorensenDice, Tarantula, Wong1, Wong2, Wong3,
nd Zoltar.
12 https://github.com/FaKeller/stardust commit 0071fe3 on Jan. 27th, 2016.
 T

10
Comparison. In Michelon et al. Hybrid (Michelon et al., 2021a),
metrics based on line- and method-level were used due to exist-
ing feature location techniques being limited to method-level or
do not yield satisfactory results when applied to single systems.
Similarly to the feature traces, we reused the code to calculate
the line- and method-level metrics used in Michelon et al. Hy-
brid (Michelon et al., 2021a) to compare the two FL techniques
in equal conditions. In addition, Michelon et al. Hybrid (Michelon
et al., 2021a) computed the benchmark metrics (i.e., similar to
statement-level). However, the execution traces granularity is at
the line-level and then the results are also based on lines of
code. Thus, it is not straightforward how to transform them to
the convention established by the benchmark (Martinez et al.,
2018a). As mentioned in Section 5.1, this convention mixes type-
level, method-level, and refinements of types and methods (e.g., a
‘‘Refinement’’ tag in a method indicates that some lines in the
method correspond to a feature but not the whole method).

We implemented our own transformer (i.e., from line of code
to benchmark trace) with a simple implementation consisting of
always adding a type-level localization when there is at least one
line in the type. For instance, if we have one or several lines in
a Java type with qualified name package.myClass, it will be
transformed to a single benchmark trace to package.myClass.
y using this naive approach, which does not consider methods or
efinement tags at type- and method-level, we assume a certain
oss in recall. Other more sophisticated approaches have been
xplored, leading to worse results, and thus a better transformer
or this specific benchmark will have to be part of further work.
onetheless, the results are positive.

.1.2. RQ1 – results
Comparison with the Hybrid approach. The static analysis im-

lemented in the ECCO tool (Fischer et al., 2014) was used
n Michelon et al. (2021a) for refining overlapping traces from the
xecution traces. In Michelon et al. (2021a), the FL is intended
or re-engineering single systems into SPLs for creating variants,
hich should contain the base plus a set of feature-specific source
ode. Thus, line- and method-level metrics reported by Michelon
t al. Hybrid (Michelon et al., 2021a) consider true positives, not
nly the feature-specific lines and methods but also the source
ode that is common for all features, i.e., the base of ArgoUML.
or the SBL techniques, including the source code of the base
n the precision and recall metrics is not potentially beneficial.

his is because the standard ranking metrics are not designed

https://github.com/FaKeller/stardust
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Fig. 8. Manual: Each point of ‘‘Spectrum-based’’ is a different ranking metric and threshold. Comparison with Michelon et al. Hybrid 2021 (Michelon et al., 2021a)
using their precision and recall metrics that considered as true positives the retrieved source code from the feature-specific plus the base source code.
Fig. 9. Similar to Fig. 8 but using tests feature exercises.

or identifying the base plus the target feature, but only the
arget feature. However, the results are also competitive in this
omparison.
Figs. 8 and 9 present the results of the different ranking

etrics for the manual and test execution traces using the line-
nd method-level metrics as defined in Michelon et al. (2021a).
he vertical dashed lines show the boundaries regarding recall.
ven if we include all the source code executed through the input
xecution traces, these execution traces did not include all the
eature source code and base code. For the sake of illustration,
e selected and included specific ranking labels in Figs. 8 and 9
o show examples of those with high precision, recall, and balance
etween them. The labels correspond to the closest points to the
abel.

In Fig. 8, the average of the six diagram features from manual
xecution from Michelon et al. Hybrid (Michelon et al., 2021a)
pproach mostly dominates at line-level (the dominated area has
light background). However, ranking metrics in the extremes
f precision (e.g., Wong2 1.0) and recall (e.g., Hamming 0.1) are
lso part of the Pareto front (i.e., non-dominated solutions). At
he method-level, SBFL techniques get closer to Michelon et al.
2021a) even if they were not specifically designed to locate the
ase source code. Fig. 9 shows the results for the tests execu-
ion traces for the eight features. At line-level, the results by
ichelon et al. Hybrid (Michelon et al., 2021a) dominates in

erms of precision, but several SBFL techniques are close to it,
uch as Wong1 1.0, which also has a higher recall. The highest
recision for SBFL is obtained with Wong3 1.0. At the method-
evel, we have solutions that slightly outperform Michelon et al.
ybrid (Michelon et al., 2021a) both in precision and recall, such
s Wong1 1.0, Ochiai 0.1 to 0.3, or Tarantula 0.1 to 0.5.
In summary, on the one hand, it can be appreciated that SBFL

echniques outperform the approach from Michelon et al. Hy-
rid (Michelon et al., 2021a) when considering the method-level
11
metrics. On the other hand, when considering line-level metrics,
the approach from Michelon et al. Hybrid (Michelon et al., 2021a)
shows a slightly higher precision, although the difference is not
high. The approach from Michelon et al. Hybrid (Michelon et al.,
2021a) retrieves higher precision at the line-level because it
considers also the lines of the base source code as true posi-
tives, which our technique does not. At the method-level, the
base source code does not make such a difference because lines
belonging to the base in a method body are not considered. A
method signature is part of a feature when at least one line is
within the method body. Thus, fewer false positives are retrieved
by our SBFL technique, which gets closer to the approach from
Michelon et al. Hybrid (Michelon et al., 2021a). Some results of
our approach show higher recall when compared to the approach
from Michelon et al. Hybrid (Michelon et al., 2021a). Specifi-
cally, the results present higher precision scores when applying
SBFL with the Wong2 metric, whereas the ArithmeticMean or
Hamming metrics provide higher recall scores.

Spectrum-based localization results. Fig. 10 shows the results
with our own transformer to benchmark convention for the man-
ual and test exercises. For comparison, we include the results
reported by Michelon et al. Hybrid (Michelon et al., 2021a) using
the benchmark convention. In addition, we include Michelon et al.
Static (Michelon et al., 2019) results, which is a static approach
reasoning on variants overlap. The latter is successful in scenar-
ios with an increasing number of variants and it also considers
feature interactions. From this work, we include only the results
in the benchmark scenario with only one variant and using the
average of the considered features.

In Fig. 10(a), the results with the highest precision are ob-
tained through different ranking metrics (Wong2 0.9 to 1.0,
Ochiai 0.8 to 1.0, Ochiai2 0.7 to 1.0, Tarantula 0.9 to 1.0, Hamming
0.9 to 1.0, Euclid 1.0, ArithmeticMean 0.9 to 1.0, HarmonicMean
0.9 to 1.0, Anderberg 0.4 to 1.0, among others) and with the same
values as with the manual exercises. Those are also the ones that
obtained the highest F1, i.e., HarmonicMean of the precision and
recall. For recall, not surprisingly, the highest values are obtained
with low thresholds with different techniques (e.g., Wong2 0.1,
Hamming 0.1, ArithmeticMean 0.1 to 0.4, among others). We
can observe how Michelon et al. Static (Michelon et al., 2019)
is in the Pareto front because of its recall value. Michelon et al.
Hybrid (Michelon et al., 2021a) got lower values in both precision
and recall compared to SBFL ranking metrics and thresholds
(Ample 0.5 to 0.6). Fig. 10(b) shows the results for the testing
exercises. In this case, Michelon et al. Hybrid (Michelon et al.,
2021a) dominates the SBFL technique in both dimensions. The
ones closer to Michelon et al. Hybrid (Michelon et al., 2021a)
are Wong2, Tarantula, Hamming, ArithmeticMean 0.9 to 1.0,

Anderberg 0.4 to 1.0, Ochiai 0.8 to 1.0, and Ochiai2 0.7 to 1.0.
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Fig. 10. Feature exercises: using manual (six diagram features) and tests (all eight features) traces.
As a summary, for the manual exercises, techniques based on
our approach provide higher precision than previously proposed
by Michelon et al. Static (Michelon et al., 2019) and Michelon
et al. Hybrid (Michelon et al., 2021a) approaches. Specifically, the
Wong2 0.9 to 1.0 show the highest precision, while being compet-
itive in the recall too. However, the approach from Michelon et al.
Static (Michelon et al., 2019) shows an overall higher recall, but
precision was lower. The reason why the approach fromMichelon
et al. Static (Michelon et al., 2019) results in fewer false negatives
is because it considers all the source code and not only the source
code from execution traces as our approach does. In our case, the
execution traces do not have good coverage of the source code.

On the other hand, when using the tests, the approach from
Michelon et al. Hybrid (Michelon et al., 2021a) showed both
higher precision and recall than ours. The reason is again be-
cause of considering as true positives also the lines belonging
to the base source code, besides the features source code. The
approach from Michelon et al. Static (Michelon et al., 2019) also
outperforms our approach in terms of recall, although not in
precision.

Regarding the performance, we computed the average of 30
runs using a laptop model Latitude 5480, Intel(R) Core(TM) i5-
7300U processor (2.60 GHz), running the Windows 10 operating
system. The Dataset Reader takes around 18 s as it needs to parse
all the execution traces’ files. For the creation of the spectrum,
the computation of the ranks using the ranking metric for the
six features, under the defined threshold 0.1 for all the runs in
the performed experiment, took less than a second or around a
second. Thus, scalability regarding performance does not seem
to be a problem for SBFL techniques. The runtime performance
of the static approach used in Michelon et al. Hybrid (Michelon
et al., 2021a), after having the execution traces, took on aver-
age ≈19 s per feature. We cannot compare the runtime of our
approach with Michelon et al. Hybrid (Michelon et al., 2021a)
because the laptop model is different, but both performed in a
reasonable time. As a drawback, we should remember the time
needed to exercise the features, a required step in any dynamic
FL technique, which can add several minutes for preparation and
obtaining the execution traces.

6.2. RQ2: Improving dynamic SBFL for families of systems

6.2.1. Experimental protocol
Exercising the features. We created a new JaCoCo-based dataset
o provide a more standard format for replication and to ease
uilding on top of this work. Table 3 shows the number of exe-
uted lines per feature. For the manual exercises, we replicated
he same procedure. As it was not exactly the same manual

nteraction, we ended up with around 4,000 more lines of code

12
Table 3
Characteristics of the feature exercises for the JaCoCo dataset.
Feature ELoC Number of Tests

Manual Tests

ActivityDiagram 23,693 5,560 14
CollaborationDiagram 23,177 4,575 3
DeploymentDiagram 23,636 3,909 1
SequenceDiagram 22,119 4,350 7
StateDiagram 24,481 5,333 13
UsecaseDiagram 23,219 4,841 20
Cognitive – 22,407 251

Average 23,387 7,282 44

per feature compared with Table 2. Overall, for the manual ex-
ercises, the number of covered lines are quite similar for each
feature. However, for the tests, the feature Cognitive seems to
be more largely exercised. For the tests, we created JUnit test
suites according to the mapping of features and tests from Fischer
et al. (2020). Table 3 shows also the number of tests per feature.
We can observe that Cognitive consists of 251 tests which is
a significantly larger number than the available tests for other
features.

We consider that showing the results for all the ranking met-
rics and threshold combinations is no longer needed. We decided
to leverage the findings in RQ1 to select one of the combinations
with high precision (e.g., Wong2 0.9 to 1.0, Ochiai2 0.7 to 1.0, or
Tarantula 0.9 to 1.0) so we will show the results for Wong2 1.0. If
our hypothesis is correct, the method described in Section 4.3 to
refine SBFL results, will allow increasing precision. This way, se-
lecting one that we know that will have relatively high precision,
will be the worst case to show increase in precision.

For the experimentation of RQ2 we use 12 scenarios of the
benchmark, and for both RQ2 and RQ3, the performance metrics
are obtained with a MacBook Pro 2020, 2 GHz Quad-Core Intel
Core i5, 16 GB 3733 MHz LPDDR4X.

6.2.2. RQ2 – results
Figs. 11 and 12 present the results for the manual and test

execution traces, respectively. They show precision, recall, and F1
for both the benchmark metrics and type-level metrics. In this
RQ2, we assume that variants exist, but we included the Original
scenario (single system) to show the initial results of the SBFL
technique in single systems with the new JaCoCo execution traces
dataset.

In the mentioned figures, we can observe how for the Ran-
dom02 scenario, our approach already increases precision with-
out losing recall. The Random02 scenario contains two variants
where one is the Original and the other one is the Original
without one feature. Then we observe a significant increase of
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Fig. 11. Results of the dynamic SBFL with manual traces.
Fig. 12. Results of the dynamic SBFL with test traces.
recision with three variants (Random03). Then, a smaller in-
rease with four variants, and finally it gets constant indepen-
ently of the scenario. These results confirm that the proposed
pproach for enhancing dynamic SBFL results for families of sys-
ems is sound. Thus, the proposed approach should be used when
ariants are available.
Figs. 13(a) and 13(b) show the time measurements. We sep-

rated the time from the dynamic SBFL technique (few seconds
or all scenarios) and the relatively time-consuming rules. No op-
imization was performed as in our context, where FL is normally
one once, the time performance is not highly relevant.

.3. RQ3: Static SBFL for families of systems

.3.1. Experimental protocol
We use Wong2 1.0, as explained in Section 4.4, and 11 scenar-

os from the benchmark. For the list of features, we automatically
dd interaction features for each pair of features present in each
cenario. This expansion of the feature list considering feature
nteractions is relevant in the SFS step (see Section 3.3) for assign-
ng the identified blocks not only to features, but also to feature
nteractions. With this method, available in BUT4Reuse, the pair-
ise feature interactions that are considered are determined by
he scenario. Thus, feature interactions that are present in at least
ne variant of a respective scenario are added, and interactions
hat are not present in the variants of the respective scenario are
13
not added to the feature list. The intuition is that, for instance, if
features A and B are never present in any variant of the scenario,
it is not worthy to try to locate the implementation elements
exclusively related to the interaction of A and B, as they will not
be present in any of the variants.

6.3.2. RQ3 – results
Fig. 14 shows the results for the benchmark metrics while

using the static SBFL approach presented in Section 4.4. We can
observe that the results of our static SBFL technique are the same
as FCA+SFS and IE+SFS for all the scenarios. Only in four scenarios
we found variations of very small order that we did not find a
clear reason for. Anyhow, the four variations were positive for
the static SBFL approach.

As presented in Section 4.1, the n-way matching used in our
experiments is id-based and signature based. Identical n-way
matching strategies were used for our SBFL technique, FCA+SFS
and IE+SFS. Certainly, more sophisticated n-way matching
strategies have been proposed in the literature, such as multi-
dimensional search trees (Schultheiß et al., 2021) or algorithms
that incrementally process variants’ subsets (Rubin and Chechik,
2013a). Despite that investigating the effect of different n-way
matching strategies is an interesting direction, it was out of the
scope of this work. Further, these advanced approaches cannot
show all their benefits with ArgoUML SPL FL benchmark, as
variants of each scenario did not evolve with refactoring or other
type of change.
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Fig. 13. Measured average execution time of 10 runs for the dynamic SBFL.

Fig. 14. Results of the static SBFL which are the same as FCA+SFS and IE+SFS.

Fig. 15. ECCO results using its comparison-based feature localization technique (Michelon et al., 2019).

14
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Fig. 16. Measured average execution time of 10 runs for FCA+SFS, IE+SFS, and SBFL. It includes the preparation and execution time for each technique.
Fig. 15 shows the results of an advanced comparison-based
pproach proposed for the benchmark (Michelon et al., 2019)
ased on the ECCO tool. We can observe that the results shown
n Fig. 14 are relatively similar to the ECCO approach until the
cenario Random06. Fig. 14(b) shows the results at Java types
ranularity. In this graph, we can observe higher recall until
andom06, meaning that the involved Java files for the features
re better retrieved. However, after Random06, ECCO clearly out-
erforms our approach, being also a static one. The reason can be
elated to the finer granularity that ECCO does of the AST nodes,
eing able to calculate similarity at statement level, or the way it
ncrementally compares the variants.

Fig. 16 shows the time measurements for the static SBFL
pproach as well as for FCA+SFS and IE+SFS. We separate each
ne in Preparation time and FL time. Preparation in BUT4Reuse
onsists in adapting the variants, i.e., parsing the source code and
reating the JDT Elements abstraction. This is common to all FL
echniques. Using the concurrent adaptation option of BUT4Reuse
e noticed better times for this preparation phase. The adapta-
ion in parallel of the variants makes that the time for preparation
s relatively similar for all the scenarios, independently of the
umber of variants. We can observe that IE+SFS outperforms
he time performance of both FCA+SFS and our static SBFL. We
mplemented some optimizations, such as generating the spectra
nly once for locating all the different features. However, there is
otential for further optimizations and other SBL libraries can be
ested to replace the one we use now. Contrary to both our static
BFL technique and FCA+SFS, IE+SFS does not use any external
ibrary as it is implemented directly in BUT4Reuse. Thus, this can
lso explain its runtime measures. An analysis of the order of
omplexity of the different algorithms is out of the scope of this
aper. Our objective was to empirically show results in terms of
ccuracy and time performance.
Based on the results of this section, we can see that SBFL can

e used not only for dynamic FL, but also for static FL without
etriment to accuracy compared to state-of-the-art approaches.
ur technique takes longer time, but it is still feasible for practical
se. Nonetheless, we recall that our main goal in RQ3 was to
valuate the flexibility of SBFL techniques.

. Threats to validity

An external validity threat in our evaluation refers to the gener-
alizability of the results. We only used one case study to evaluate
our approach, the ArgoUML SPL FL benchmark (Martinez et al.,
2018a). Other case studies exist, such as the Linux kernel (Xing
et al., 2013) and Marlin (Krüger et al., 2019). Both of them are
15
programmed in C. As we mentioned in Section 5.1, our implemen-
tation has dependencies with different tools for Java (e.g., JaCoCo),
therefore, not being possible to use with these case studies. How-
ever, our case study is widely used by the community (Martinez
et al., 2017). Moreover, as mentioned before, the tool contains
a total of eight optional features, and diverse scenarios. The
scenarios provide certain level of diversity in the set of variants.
Further, the scenarios can be considered different case studies,
as we evaluated each of them separately. Each feature contains
from 1,579 to 16,319 lines of code (LoC). The total number of
LoC of the variants range between 110 and 148 KLoC (Martinez
et al., 2018a). Thus, the complexity of the case study was high
compared to other illustrative systems that could have been
considered (e.g., the mentioned Draw Product Line or Sudoku and
Notepad (Michelon et al., 2021a)). Adding any of those illustra-
tive systems will not have added value to our contribution as
a manual FL is straightforward in those cases. The availability
of benchmarks is a recognized concern in the SPL field (Strüber
et al., 2019) and very recent efforts are trying to automatize
their creation (Schultheiß et al., 2022). In our case, the system
also requires having a graphical user interface to exercise the
features, or feature-based tests, which presents also challenging
requirements. While we consider that our techniques are sound,
the threat to generalization will need to be considered in future
works.

An internal validity threat refers to source code of our ex-
perimentation pipeline that might have implementation issues.
We mitigated this by being three researchers the ones inspect-
ing the source code and comparing our results to allow future
reproducibility. Another internal threat to validity is related to
the matching algorithm we used to compute the metrics at the
line-level. To mitigate this, we used a diff library, which has been
already used in previous works on feature location (Michelon
et al., 2021a, 2020, 2022), and its implementation is available.

8. Conclusions

Feature location is a relevant activity for the detection phase in
re-engineering variants into SPLs. We explored the use of SBFL in
the context of families of systems. Our results obtained in several
scenarios of an established feature localization benchmark show
that SBFL in families of systems increases precision even with
only a few variants. Thus, the presence of variants can make the
dynamic SBFL results more precise. Regarding some settings of
SBFL, using high thresholds in our study favors precision with
the metrics Wong2, Ochiai2, or Tarantula. Conversely, using most
of the SBFL metrics with low thresholds favors recall. We also
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confirmed that SBFL can be used in a static way to compare
variants providing equal, or at least competitive, results as those
in the state of the art. We expect that our novel approaches,
and the obtained empirical results, could position SBFL as an
alternative to be considered in FL for SPL adoption tasks.

As further work, the proposed static and dynamic SBFL tech-
iques could be combined with text-based techniques. Other case
tudies will also be desirable for the generalization of the findings.
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